Fermi edge resonances in non-equilibrium states of Fermi gases

We formulate the problem of the Fermi edge singularity in non-equilibrium states of a Fermi gas as a matrix Riemann-Hilbert problem with an integrable kernel. This formulation is the most suitable for studying the singular behavior at each edge of non-equilibrium Fermi states by means of the method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2011-07, Vol.44 (28), p.282001-11
Hauptverfasser: Bettelheim, E, Kaplan, Y, Wiegmann, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We formulate the problem of the Fermi edge singularity in non-equilibrium states of a Fermi gas as a matrix Riemann-Hilbert problem with an integrable kernel. This formulation is the most suitable for studying the singular behavior at each edge of non-equilibrium Fermi states by means of the method of steepest descent, and also reveals the integrable structure of the problem. We supplement this result by extending the familiar approach to the problem of the Fermi edge singularity via the bosonic representation of the electronic operators to non-equilibrium settings. It provides a compact way to extract the leading asymptotes.
ISSN:1751-8121
1751-8113
1751-8121
DOI:10.1088/1751-8113/44/28/282001