Fermi edge resonances in non-equilibrium states of Fermi gases
We formulate the problem of the Fermi edge singularity in non-equilibrium states of a Fermi gas as a matrix Riemann-Hilbert problem with an integrable kernel. This formulation is the most suitable for studying the singular behavior at each edge of non-equilibrium Fermi states by means of the method...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2011-07, Vol.44 (28), p.282001-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We formulate the problem of the Fermi edge singularity in non-equilibrium states of a Fermi gas as a matrix Riemann-Hilbert problem with an integrable kernel. This formulation is the most suitable for studying the singular behavior at each edge of non-equilibrium Fermi states by means of the method of steepest descent, and also reveals the integrable structure of the problem. We supplement this result by extending the familiar approach to the problem of the Fermi edge singularity via the bosonic representation of the electronic operators to non-equilibrium settings. It provides a compact way to extract the leading asymptotes. |
---|---|
ISSN: | 1751-8121 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8113/44/28/282001 |