Transmit Energy Focusing for DOA Estimation in MIMO Radar With Colocated Antennas

In this paper, we propose a transmit beamspace energy focusing technique for multiple-input multiple-output (MIMO) radar with application to direction finding for multiple targets. The general angular directions of the targets are assumed to be located within a certain spatial sector. We focus the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2011-06, Vol.59 (6), p.2669-2682
Hauptverfasser: Hassanien, A, Vorobyov, S A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a transmit beamspace energy focusing technique for multiple-input multiple-output (MIMO) radar with application to direction finding for multiple targets. The general angular directions of the targets are assumed to be located within a certain spatial sector. We focus the energy of multiple (two or more) transmitted orthogonal waveforms within that spatial sector using transmit beamformers which are designed to improve the signal-to-noise ratio (SNR) gain at each receive antenna. The subspace decomposition-based techniques such as MUSIC can then be used for direction finding for multiple targets. Moreover, the transmit beamformers can be designed so that matched-filtering the received data to the waveforms yields multiple (two or more) data sets with rotational invariance property that allows applying search-free direction finding techniques such as ESPRIT or parallel factor analysis (PARAFAC). Unlike previously reported MIMO radar ESPRIT/PARAFAC-based direction finding techniques, our method achieves the rotational invariance property in a different manner combined also with the transmit energy focusing. As a result, it achieves better estimation performance at lower computational cost. The corresponding Cramer-Rao bound is derived and its dependence on the number of waveforms used is discussed. Simulation results also show the superiority of the proposed technique over the existing techniques.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2011.2125960