Flux Pump for HTS Magnets

Magnets fabricated with HTS wire can not be operated in a true persistent mode as superconducting joints of sufficient technological quality have not been achieved to date. In order to maintain a constant magnetic field in a HTS magnet a power supply has to be permanently employed, which then leads...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2011-06, Vol.21 (3), p.1628-1631
Hauptverfasser: Hoffmann, C, Pooke, D, Caplin, A D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnets fabricated with HTS wire can not be operated in a true persistent mode as superconducting joints of sufficient technological quality have not been achieved to date. In order to maintain a constant magnetic field in a HTS magnet a power supply has to be permanently employed, which then leads to heat losses in the cryo-system through the employment of current leads. By using a flux pump these losses can be minimized. We present a new flux pump based on 2G HTS wire. This device energized at 77 K a 2.7 mH 2G HTS double-pancake coil to its critical current of 49 A within 112 seconds. The operating principle will be described and data of the current ramping is shown. Considering the simplicity of the device and the potential to increase the generated current to 200 A and more, this new flux pump is very promising for many superconducting devices including HTS and LTS magnets and rotating machines.
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2010.2093115