Computationally Efficient Modulation Level Classification Based on Probability Distribution Distance Functions

We present a novel modulation level classification (MLC) method based on probability distribution distance functions. The proposed method uses modified Kuiper and Kolmogorov-Smirnov distances to achieve low computational complexity and outperforms the state of the art methods based on cumulants and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2011-05, Vol.15 (5), p.476-478
Hauptverfasser: Urriza, P, Rebeiz, E, Pawelczak, P, Cabric, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 478
container_issue 5
container_start_page 476
container_title IEEE communications letters
container_volume 15
creator Urriza, P
Rebeiz, E
Pawelczak, P
Cabric, D
description We present a novel modulation level classification (MLC) method based on probability distribution distance functions. The proposed method uses modified Kuiper and Kolmogorov-Smirnov distances to achieve low computational complexity and outperforms the state of the art methods based on cumulants and goodness-of-fit tests. We derive the theoretical performance of the proposed MLC method and verify it via simulations. The best classification accuracy, under AWGN with SNR mismatch and phase jitter, is achieved with the proposed MLC method using Kuiper distances.
doi_str_mv 10.1109/LCOMM.2011.032811.110316
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_24154103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5741766</ieee_id><sourcerecordid>889418708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e22b45db7c6170e36d9551fbb8d1e18500a452757008db64c2fb76ddcf6c89963</originalsourceid><addsrcrecordid>eNpdkT1PwzAQhiMEEqXwC1giJMSUYjvx1wihBaRUZYDZsh1HcuUmxU6Q-u9xGtSBxXe-e-6VfW-SpBAsIAT8sSo36_UCAQgXIEcshljOITlLZhBjlqF4nMccMJ5RytllchXCFgDAEIazpC273X7oZW-7Vjp3SJdNY7U1bZ-uu3pwx0ZamR_j0tLJEGxsT8VnGUydxuTDd0oq62x_SF9s6L1Vw5EYL7LVJl0NrR4r4Tq5aKQL5uYvzpOv1fKzfMuqzet7-VRlOieszwxCqsC1oppACkxOao4xbJRiNTSQYQBkgRHFNH6jVqTQqFGU1LVuiGack3yePEy6e999Dyb0YmeDNs7J1nRDEIzxAjIKWCTv_pHbbvBxFxEiJOeAFaMcmyDtuxC8acTe2530BwGBGG0QRxvEaIOYbBCTDXH0_k9fBi1d4-NCbDjNowLiIpKRu504a4w5tTEtII3P-AVLEpKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866390846</pqid></control><display><type>article</type><title>Computationally Efficient Modulation Level Classification Based on Probability Distribution Distance Functions</title><source>IEEE Electronic Library (IEL)</source><creator>Urriza, P ; Rebeiz, E ; Pawelczak, P ; Cabric, D</creator><creatorcontrib>Urriza, P ; Rebeiz, E ; Pawelczak, P ; Cabric, D</creatorcontrib><description>We present a novel modulation level classification (MLC) method based on probability distribution distance functions. The proposed method uses modified Kuiper and Kolmogorov-Smirnov distances to achieve low computational complexity and outperforms the state of the art methods based on cumulants and goodness-of-fit tests. We derive the theoretical performance of the proposed MLC method and verify it via simulations. The best classification accuracy, under AWGN with SNR mismatch and phase jitter, is achieved with the proposed MLC method using Kuiper distances.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2011.032811.110316</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Applied sciences ; Classification ; Complexity theory ; Computational efficiency ; Computer simulation ; distribution distance ; Exact sciences and technology ; Information, signal and communications theory ; Jitter ; Kuiper test ; Mathematical analysis ; Mathematical models ; Measurement ; Modulation ; Modulation classification ; Modulation, demodulation ; Signal and communications theory ; Signal to noise ratio ; Sorting ; State of the art ; Telecommunications and information theory</subject><ispartof>IEEE communications letters, 2011-05, Vol.15 (5), p.476-478</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e22b45db7c6170e36d9551fbb8d1e18500a452757008db64c2fb76ddcf6c89963</citedby><cites>FETCH-LOGICAL-c368t-e22b45db7c6170e36d9551fbb8d1e18500a452757008db64c2fb76ddcf6c89963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5741766$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5741766$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24154103$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Urriza, P</creatorcontrib><creatorcontrib>Rebeiz, E</creatorcontrib><creatorcontrib>Pawelczak, P</creatorcontrib><creatorcontrib>Cabric, D</creatorcontrib><title>Computationally Efficient Modulation Level Classification Based on Probability Distribution Distance Functions</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>We present a novel modulation level classification (MLC) method based on probability distribution distance functions. The proposed method uses modified Kuiper and Kolmogorov-Smirnov distances to achieve low computational complexity and outperforms the state of the art methods based on cumulants and goodness-of-fit tests. We derive the theoretical performance of the proposed MLC method and verify it via simulations. The best classification accuracy, under AWGN with SNR mismatch and phase jitter, is achieved with the proposed MLC method using Kuiper distances.</description><subject>Accuracy</subject><subject>Applied sciences</subject><subject>Classification</subject><subject>Complexity theory</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>distribution distance</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Jitter</subject><subject>Kuiper test</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Modulation</subject><subject>Modulation classification</subject><subject>Modulation, demodulation</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Sorting</subject><subject>State of the art</subject><subject>Telecommunications and information theory</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkT1PwzAQhiMEEqXwC1giJMSUYjvx1wihBaRUZYDZsh1HcuUmxU6Q-u9xGtSBxXe-e-6VfW-SpBAsIAT8sSo36_UCAQgXIEcshljOITlLZhBjlqF4nMccMJ5RytllchXCFgDAEIazpC273X7oZW-7Vjp3SJdNY7U1bZ-uu3pwx0ZamR_j0tLJEGxsT8VnGUydxuTDd0oq62x_SF9s6L1Vw5EYL7LVJl0NrR4r4Tq5aKQL5uYvzpOv1fKzfMuqzet7-VRlOieszwxCqsC1oppACkxOao4xbJRiNTSQYQBkgRHFNH6jVqTQqFGU1LVuiGack3yePEy6e999Dyb0YmeDNs7J1nRDEIzxAjIKWCTv_pHbbvBxFxEiJOeAFaMcmyDtuxC8acTe2530BwGBGG0QRxvEaIOYbBCTDXH0_k9fBi1d4-NCbDjNowLiIpKRu504a4w5tTEtII3P-AVLEpKo</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Urriza, P</creator><creator>Rebeiz, E</creator><creator>Pawelczak, P</creator><creator>Cabric, D</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110501</creationdate><title>Computationally Efficient Modulation Level Classification Based on Probability Distribution Distance Functions</title><author>Urriza, P ; Rebeiz, E ; Pawelczak, P ; Cabric, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e22b45db7c6170e36d9551fbb8d1e18500a452757008db64c2fb76ddcf6c89963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Applied sciences</topic><topic>Classification</topic><topic>Complexity theory</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>distribution distance</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Jitter</topic><topic>Kuiper test</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Modulation</topic><topic>Modulation classification</topic><topic>Modulation, demodulation</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Sorting</topic><topic>State of the art</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urriza, P</creatorcontrib><creatorcontrib>Rebeiz, E</creatorcontrib><creatorcontrib>Pawelczak, P</creatorcontrib><creatorcontrib>Cabric, D</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Urriza, P</au><au>Rebeiz, E</au><au>Pawelczak, P</au><au>Cabric, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computationally Efficient Modulation Level Classification Based on Probability Distribution Distance Functions</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2011-05-01</date><risdate>2011</risdate><volume>15</volume><issue>5</issue><spage>476</spage><epage>478</epage><pages>476-478</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>We present a novel modulation level classification (MLC) method based on probability distribution distance functions. The proposed method uses modified Kuiper and Kolmogorov-Smirnov distances to achieve low computational complexity and outperforms the state of the art methods based on cumulants and goodness-of-fit tests. We derive the theoretical performance of the proposed MLC method and verify it via simulations. The best classification accuracy, under AWGN with SNR mismatch and phase jitter, is achieved with the proposed MLC method using Kuiper distances.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2011.032811.110316</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2011-05, Vol.15 (5), p.476-478
issn 1089-7798
1558-2558
language eng
recordid cdi_pascalfrancis_primary_24154103
source IEEE Electronic Library (IEL)
subjects Accuracy
Applied sciences
Classification
Complexity theory
Computational efficiency
Computer simulation
distribution distance
Exact sciences and technology
Information, signal and communications theory
Jitter
Kuiper test
Mathematical analysis
Mathematical models
Measurement
Modulation
Modulation classification
Modulation, demodulation
Signal and communications theory
Signal to noise ratio
Sorting
State of the art
Telecommunications and information theory
title Computationally Efficient Modulation Level Classification Based on Probability Distribution Distance Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computationally%20Efficient%20Modulation%20Level%20Classification%20Based%20on%20Probability%20Distribution%20Distance%20Functions&rft.jtitle=IEEE%20communications%20letters&rft.au=Urriza,%20P&rft.date=2011-05-01&rft.volume=15&rft.issue=5&rft.spage=476&rft.epage=478&rft.pages=476-478&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2011.032811.110316&rft_dat=%3Cproquest_RIE%3E889418708%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866390846&rft_id=info:pmid/&rft_ieee_id=5741766&rfr_iscdi=true