Computationally Efficient Modulation Level Classification Based on Probability Distribution Distance Functions

We present a novel modulation level classification (MLC) method based on probability distribution distance functions. The proposed method uses modified Kuiper and Kolmogorov-Smirnov distances to achieve low computational complexity and outperforms the state of the art methods based on cumulants and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2011-05, Vol.15 (5), p.476-478
Hauptverfasser: Urriza, P, Rebeiz, E, Pawelczak, P, Cabric, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel modulation level classification (MLC) method based on probability distribution distance functions. The proposed method uses modified Kuiper and Kolmogorov-Smirnov distances to achieve low computational complexity and outperforms the state of the art methods based on cumulants and goodness-of-fit tests. We derive the theoretical performance of the proposed MLC method and verify it via simulations. The best classification accuracy, under AWGN with SNR mismatch and phase jitter, is achieved with the proposed MLC method using Kuiper distances.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2011.032811.110316