Inhibition of growth and cholesterol synthesis in breast cancer cells by oxidation products of β-carotene
We have isolated and chemically characterized a polar oxidation product of β-carotene and tested the effect of a highly enriched fraction containing this compound on the growth and metabolism of breast cancer (MCF-7) cells. This fraction strongly inhibits cell growth and cholesterol synthesis in MCF...
Gespeichert in:
Veröffentlicht in: | The Journal of nutritional biochemistry 1998-10, Vol.9 (10), p.567-574 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have isolated and chemically characterized a polar oxidation product of β-carotene and tested the effect of a highly enriched fraction containing this compound on the growth and metabolism of breast cancer (MCF-7) cells. This fraction strongly inhibits cell growth and cholesterol synthesis in MCF-7 cells. Pretreatment of the cells with mevalonate overcomes inhibition of cell growth by the oxidized fraction. Addition of the antioxidant butylated hydroxytoluene protects against inhibition of the growth of MCF-7 cells by β-carotene but not by the oxidized fraction. Pretreatment of cells with mevalonate overcomes inhibition of cell growth by oxidation products of β-carotene but not by retinoic acid. The oxidized fraction neither stimulates activity nor inhibits binding of retinoic acid to its nuclear receptors (RXR-α, RXR-β, RXR-γ, RAR-α, RAR-β, RAR-γ, and peroxisome proliferation receptors) in transfection assays. Mevalonate does not protect retinoic acid-induced growth inhibition of MCF-7 cells. The major compound in the inhibitory fraction was identified by mass spectrometry and nuclear magnetic resonance spectroscopy as 5,8-endoperoxy-2,3-dihydro-β-apocarotene-13-one. Our data suggest that the β-carotene oxidation products we have isolated represent a class of compounds not previously described with potential antineoplastic activity. |
---|---|
ISSN: | 0955-2863 1873-4847 |
DOI: | 10.1016/S0955-2863(98)00048-5 |