Oligomer Content of α-Pinene Secondary Organic Aerosol

The quantity, extraction efficiency, and molecular composition of non-volatile oligomeric species in SOA generated by the reaction of α-pinene with ozone were studied. Two different methods of determining the total particulate mass in the reaction chamber were compared and found to be in good agreem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerosol science and technology 2011-01, Vol.45 (1), p.37-45
Hauptverfasser: Hall, Wiley A., Johnston, Murray V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quantity, extraction efficiency, and molecular composition of non-volatile oligomeric species in SOA generated by the reaction of α-pinene with ozone were studied. Two different methods of determining the total particulate mass in the reaction chamber were compared and found to be in good agreement when changes in the partitioning of semi-volatile compounds to the particle phase during measurement were properly handled. Almost all of the non-volatile organic carbon formed by the reaction was collected and recovered by extraction with organic solvents; recoveries with water extraction were somewhat lower. The identities of compounds extracted by the various solvents were determined using electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. Over 80% of the peaks weighted by mass and intensity were the same in the spectra of samples obtained from different extraction solvents. Standard addition plots were used to determine the amounts of two commercially available monomer compounds in the SOA extracts. When the response factors for those compounds were applied to other monomers detected in the mass spectra, the weight percent of monomers was estimated to be slightly less than 50%, with the remaining mass (over 50%) assigned to oligomers. The oligomer content is sufficiently large that it should be taken into account when modeling the formation and properties of laboratory SOA.
ISSN:0278-6826
1521-7388
DOI:10.1080/02786826.2010.517580