Annular Spin-Transfer Memory Element

An annular magnetic memory that uses a spin-polarized current to switch the magnetization direction or helicity of a magnetic region is proposed. The device has magnetic materials in the shape of a ring (1-5 nm in thickness, 20-250 nm in mean radius, and 8-100 nm in width), comprising a reference ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2011-01, Vol.10 (1), p.129-134
Hauptverfasser: Kent, A D, Stein, D L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An annular magnetic memory that uses a spin-polarized current to switch the magnetization direction or helicity of a magnetic region is proposed. The device has magnetic materials in the shape of a ring (1-5 nm in thickness, 20-250 nm in mean radius, and 8-100 nm in width), comprising a reference magnetic layer with a fixed magnetic helicity and a free magnetic layer with a changeable magnetic helicity. These are separated by a thin nonmagnetic layer. Information is written using a current flowing perpendicular to the layers, inducing a spin-transfer torque that alters the magnetic state of the free layer. The resistance, which depends on the magnetic state of the device, is used to read out the stored information. This device offers several important advantages compared with conventional spin-transfer magnetic random access memory devices. First, the ring geometry offers stable magnetization states, which are, nonetheless, easily altered with short current pulses. Second, the ring geometry naturally solves a major challenge of spin-transfer devices: writing requires relatively high currents and a low impedance circuit, whereas readout demands a larger impedance and magnetoresistance. The annular device accommodates these conflicting requirements by performing reading and writing operations at separate read and write contacts placed at different locations on the ring.
ISSN:1536-125X
1941-0085
DOI:10.1109/TNANO.2009.2033598