Landau damping: the mechanics model and its ultimate entropy gain
Classical mechanics has only been invoked to account for Landau damping in a rather half-hearted way, alongside plasma perturbation theory. In particular this invocation is essential for the study of the saturation, or post-linear (or 'nonlinear') regime of the damping initiated by Dawson...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2011-02, Vol.44 (5), p.055501-16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Classical mechanics has only been invoked to account for Landau damping in a rather half-hearted way, alongside plasma perturbation theory. In particular this invocation is essential for the study of the saturation, or post-linear (or 'nonlinear') regime of the damping initiated by Dawson and O'Neill. By embracing mechanics wholeheartedly here, with its attendant phase space, one can access results, old and new, cleanly and directly, and with one fewer numerical integration for the post-linear regime. By using a summation technique familiar in semiclassical quantum mechanics (Poisson summation), the one remaining numerical integration can be much improved in accuracy. Also accessible from mechanics is the ultimate entropy gain. Though zero for any finite time (in the absence of coarse graining), the entropy gain is ultimately non-zero (at infinite time the required coarse graining is zero). It is calculated analytically by using the appropriate asymptotics, hitherto not fully exploited. |
---|---|
ISSN: | 1751-8121 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8113/44/5/055501 |