Edge effects in some perturbations of the Gaussian unitary ensemble

A bordering of Gaussian unitary ensemble matrices is considered, in which the bordered row consists of zero mean complex Gaussians N[0, σ/2] + iN[0, σ/2] off the diagonal and the real Gaussian N \documentclass[12pt]{minimal}\begin{document}$[\mu ,\sigma /\sqrt{2}]$\end{document} [ μ , σ / 2 ] on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2010-12, Vol.51 (12), p.123305-123305-16
Hauptverfasser: Bassler, K. E., Forrester, P. J., Frankel, N. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bordering of Gaussian unitary ensemble matrices is considered, in which the bordered row consists of zero mean complex Gaussians N[0, σ/2] + iN[0, σ/2] off the diagonal and the real Gaussian N \documentclass[12pt]{minimal}\begin{document}$[\mu ,\sigma /\sqrt{2}]$\end{document} [ μ , σ / 2 ] on the diagonal. We compute the explicit form of the eigenvalue probability function for such matrices as well as that for matrices obtained by repeating the bordering. The correlations are in general determinantal, and in the single bordering case the explicit form of the correlation kernel is computed. In the large N limit it is shown that μ and/or σ can be tuned to induce a separation of the largest eigenvalue. This effect is shown to be controlled by a single parameter, universal correlation kernel.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.3521288