Interleaved Converter With Voltage Multiplier Cell for High Step-Up and High-Efficiency Conversion
A novel interleaved high step-up converter with voltage multiplier cell is proposed in this paper to avoid the extremely narrow turn-off period and to reduce the current ripple, which flows through the power devices compared with the conventional interleaved boost converter in high step-up applicati...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2010-09, Vol.25 (9), p.2397-2408 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel interleaved high step-up converter with voltage multiplier cell is proposed in this paper to avoid the extremely narrow turn-off period and to reduce the current ripple, which flows through the power devices compared with the conventional interleaved boost converter in high step-up applications. Interleaved structure is employed in the input side to distribute the input current, and the voltage multiplier cell is adopted in the output side to achieve a high step-up gain. The voltage multiplier cell is composed of the secondary windings of the coupled inductors, a series capacitor, and two diodes. Furthermore, the switch voltage stress is reduced due to the transformer function of the coupled inductors, which makes low-voltage-rated MOSFETs available to reduce the conduction losses. Moreover, zero-current-switching turn- on soft-switching performance is realized to reduce the switching losses. In addition, the output diode turn-off current falling rate is controlled by the leakage inductance of the coupled inductors, which alleviates the diode reverse recovery problem. Additional active device is not required in the proposed converter, which makes the presented circuit easy to design and control. Finally, a 1-kW 40-V-input 380-V-output prototype operating at 100 kHz switching frequency is built and tested to verify the effectiveness of the presented converter. |
---|---|
ISSN: | 0885-8993 1941-0107 |
DOI: | 10.1109/TPEL.2010.2048340 |