Stochastic Networked Computation

In this paper, the stochastic networked computation (SNC) paradigm for designing robust and energy-efficient systems-on-a-chip in nanoscale process technologies, where robust computation is treated as a statistical estimation problem is presented. The benefits of SNC are demonstrated by employing it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2010-10, Vol.18 (10), p.1421-1432
Hauptverfasser: Varatkar, Girish Vishnu, Narayanan, Sriram, Shanbhag, Naresh R, Jones, Douglas L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1432
container_issue 10
container_start_page 1421
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 18
creator Varatkar, Girish Vishnu
Narayanan, Sriram
Shanbhag, Naresh R
Jones, Douglas L
description In this paper, the stochastic networked computation (SNC) paradigm for designing robust and energy-efficient systems-on-a-chip in nanoscale process technologies, where robust computation is treated as a statistical estimation problem is presented. The benefits of SNC are demonstrated by employing it to design an energy-efficient and robust pseudonoise-code acquisition system for the wireless CDMA2000 standard (http://www.3gpp2.org). Simulations in IBM's 130-nm CMOS process show that the SNC-based architecture enhances the average probability of detection (P Det ) in the presence of process variations by two to three orders of magnitude, reduces power by 31%-39%, and reduces the variation in P Det by one to two orders of magnitude at a typical false-alarm rate of 5% over a conventional architecture. SNC performance in the presence of voltage overscaling and across technology nodes (90, 65, 45, and 32 nm) is also studied.
doi_str_mv 10.1109/TVLSI.2009.2024673
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_23270490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5280185</ieee_id><sourcerecordid>855693054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-f8a70899b5f09da26e363d625b8251afc9bd163ab31750c711ab92e19d07df7e3</originalsourceid><addsrcrecordid>eNpdkEtLAzEQgIMoWKt_QC8FEU9bJ8nmdZTio1D00Oo1ZLNZ3Lrd1GQX8d-b2qUH5zAzMN8Mw4fQJYYpxqDuVu-L5XxKAFRKJOeCHqERZkxkKsVx6oHTTBIMp-gsxjUAznMFIzRZdt5-mNjVdvLium8fPl05mfnNtu9MV_v2HJ1UponuYqhj9Pb4sJo9Z4vXp_nsfpFZykSXVdIIkEoVrAJVGsId5bTkhBWSMGwqq4oSc2oKigUDKzA2hSIOqxJEWQlHx-h2f3cb_FfvYqc3dbSuaUzrfB-1ZIwrCixP5PU_cu370KbnNAaiJJcYaKLInrLBxxhcpbeh3pjwkyC9c6b_nOmdMz04S0s3w2kTrWmqYFpbx8MmoURA0pa4qz1XO-cOY0YkYMnoL9OBcv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1029868103</pqid></control><display><type>article</type><title>Stochastic Networked Computation</title><source>IEEE Electronic Library (IEL)</source><creator>Varatkar, Girish Vishnu ; Narayanan, Sriram ; Shanbhag, Naresh R ; Jones, Douglas L</creator><creatorcontrib>Varatkar, Girish Vishnu ; Narayanan, Sriram ; Shanbhag, Naresh R ; Jones, Douglas L</creatorcontrib><description>In this paper, the stochastic networked computation (SNC) paradigm for designing robust and energy-efficient systems-on-a-chip in nanoscale process technologies, where robust computation is treated as a statistical estimation problem is presented. The benefits of SNC are demonstrated by employing it to design an energy-efficient and robust pseudonoise-code acquisition system for the wireless CDMA2000 standard (http://www.3gpp2.org). Simulations in IBM's 130-nm CMOS process show that the SNC-based architecture enhances the average probability of detection (P Det ) in the presence of process variations by two to three orders of magnitude, reduces power by 31%-39%, and reduces the variation in P Det by one to two orders of magnitude at a typical false-alarm rate of 5% over a conventional architecture. SNC performance in the presence of voltage overscaling and across technology nodes (90, 65, 45, and 32 nm) is also studied.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2009.2024673</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Architecture ; CMOS ; CMOS process ; CMOS technology ; Code division multiple access (CDMA) ; Computation ; Computational modeling ; Computer architecture ; Computer networks ; Design. Technologies. Operation analysis. Testing ; Electronics ; Energy efficiency ; Exact sciences and technology ; Integrated circuits ; low power ; Nanocomposites ; Nanomaterials ; nanoscale ; Nanostructure ; Probability ; process variations ; reliability ; robust ; Robustness ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; soft errors ; stochastic ; Stochastic processes ; Stochastic systems ; Stochasticity ; Very large scale integration ; Voltage</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2010-10, Vol.18 (10), p.1421-1432</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-f8a70899b5f09da26e363d625b8251afc9bd163ab31750c711ab92e19d07df7e3</citedby><cites>FETCH-LOGICAL-c357t-f8a70899b5f09da26e363d625b8251afc9bd163ab31750c711ab92e19d07df7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5280185$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5280185$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23270490$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Varatkar, Girish Vishnu</creatorcontrib><creatorcontrib>Narayanan, Sriram</creatorcontrib><creatorcontrib>Shanbhag, Naresh R</creatorcontrib><creatorcontrib>Jones, Douglas L</creatorcontrib><title>Stochastic Networked Computation</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>In this paper, the stochastic networked computation (SNC) paradigm for designing robust and energy-efficient systems-on-a-chip in nanoscale process technologies, where robust computation is treated as a statistical estimation problem is presented. The benefits of SNC are demonstrated by employing it to design an energy-efficient and robust pseudonoise-code acquisition system for the wireless CDMA2000 standard (http://www.3gpp2.org). Simulations in IBM's 130-nm CMOS process show that the SNC-based architecture enhances the average probability of detection (P Det ) in the presence of process variations by two to three orders of magnitude, reduces power by 31%-39%, and reduces the variation in P Det by one to two orders of magnitude at a typical false-alarm rate of 5% over a conventional architecture. SNC performance in the presence of voltage overscaling and across technology nodes (90, 65, 45, and 32 nm) is also studied.</description><subject>Applied sciences</subject><subject>Architecture</subject><subject>CMOS</subject><subject>CMOS process</subject><subject>CMOS technology</subject><subject>Code division multiple access (CDMA)</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Computer networks</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Energy efficiency</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>low power</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>nanoscale</subject><subject>Nanostructure</subject><subject>Probability</subject><subject>process variations</subject><subject>reliability</subject><subject>robust</subject><subject>Robustness</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>soft errors</subject><subject>stochastic</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Stochasticity</subject><subject>Very large scale integration</subject><subject>Voltage</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEQgIMoWKt_QC8FEU9bJ8nmdZTio1D00Oo1ZLNZ3Lrd1GQX8d-b2qUH5zAzMN8Mw4fQJYYpxqDuVu-L5XxKAFRKJOeCHqERZkxkKsVx6oHTTBIMp-gsxjUAznMFIzRZdt5-mNjVdvLium8fPl05mfnNtu9MV_v2HJ1UponuYqhj9Pb4sJo9Z4vXp_nsfpFZykSXVdIIkEoVrAJVGsId5bTkhBWSMGwqq4oSc2oKigUDKzA2hSIOqxJEWQlHx-h2f3cb_FfvYqc3dbSuaUzrfB-1ZIwrCixP5PU_cu370KbnNAaiJJcYaKLInrLBxxhcpbeh3pjwkyC9c6b_nOmdMz04S0s3w2kTrWmqYFpbx8MmoURA0pa4qz1XO-cOY0YkYMnoL9OBcv8</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Varatkar, Girish Vishnu</creator><creator>Narayanan, Sriram</creator><creator>Shanbhag, Naresh R</creator><creator>Jones, Douglas L</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20101001</creationdate><title>Stochastic Networked Computation</title><author>Varatkar, Girish Vishnu ; Narayanan, Sriram ; Shanbhag, Naresh R ; Jones, Douglas L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-f8a70899b5f09da26e363d625b8251afc9bd163ab31750c711ab92e19d07df7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Architecture</topic><topic>CMOS</topic><topic>CMOS process</topic><topic>CMOS technology</topic><topic>Code division multiple access (CDMA)</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Computer networks</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Energy efficiency</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>low power</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>nanoscale</topic><topic>Nanostructure</topic><topic>Probability</topic><topic>process variations</topic><topic>reliability</topic><topic>robust</topic><topic>Robustness</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>soft errors</topic><topic>stochastic</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Stochasticity</topic><topic>Very large scale integration</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varatkar, Girish Vishnu</creatorcontrib><creatorcontrib>Narayanan, Sriram</creatorcontrib><creatorcontrib>Shanbhag, Naresh R</creatorcontrib><creatorcontrib>Jones, Douglas L</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Varatkar, Girish Vishnu</au><au>Narayanan, Sriram</au><au>Shanbhag, Naresh R</au><au>Jones, Douglas L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Networked Computation</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>18</volume><issue>10</issue><spage>1421</spage><epage>1432</epage><pages>1421-1432</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>In this paper, the stochastic networked computation (SNC) paradigm for designing robust and energy-efficient systems-on-a-chip in nanoscale process technologies, where robust computation is treated as a statistical estimation problem is presented. The benefits of SNC are demonstrated by employing it to design an energy-efficient and robust pseudonoise-code acquisition system for the wireless CDMA2000 standard (http://www.3gpp2.org). Simulations in IBM's 130-nm CMOS process show that the SNC-based architecture enhances the average probability of detection (P Det ) in the presence of process variations by two to three orders of magnitude, reduces power by 31%-39%, and reduces the variation in P Det by one to two orders of magnitude at a typical false-alarm rate of 5% over a conventional architecture. SNC performance in the presence of voltage overscaling and across technology nodes (90, 65, 45, and 32 nm) is also studied.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2009.2024673</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2010-10, Vol.18 (10), p.1421-1432
issn 1063-8210
1557-9999
language eng
recordid cdi_pascalfrancis_primary_23270490
source IEEE Electronic Library (IEL)
subjects Applied sciences
Architecture
CMOS
CMOS process
CMOS technology
Code division multiple access (CDMA)
Computation
Computational modeling
Computer architecture
Computer networks
Design. Technologies. Operation analysis. Testing
Electronics
Energy efficiency
Exact sciences and technology
Integrated circuits
low power
Nanocomposites
Nanomaterials
nanoscale
Nanostructure
Probability
process variations
reliability
robust
Robustness
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
soft errors
stochastic
Stochastic processes
Stochastic systems
Stochasticity
Very large scale integration
Voltage
title Stochastic Networked Computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Networked%20Computation&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Varatkar,%20Girish%20Vishnu&rft.date=2010-10-01&rft.volume=18&rft.issue=10&rft.spage=1421&rft.epage=1432&rft.pages=1421-1432&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2009.2024673&rft_dat=%3Cproquest_RIE%3E855693054%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1029868103&rft_id=info:pmid/&rft_ieee_id=5280185&rfr_iscdi=true