Soft-Input Soft-Output Single Tree-Search Sphere Decoding

Soft-input soft-output (SISO) detection algorithms form the basis for iterative decoding. The computational complexity of SISO detection often poses significant challenges for practical receiver implementations, in particular in the context of multiple-input multiple-output (MIMO) wireless communica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2010-10, Vol.56 (10), p.4827-4842
Hauptverfasser: Studer, Christoph, Bölcskei, Helmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soft-input soft-output (SISO) detection algorithms form the basis for iterative decoding. The computational complexity of SISO detection often poses significant challenges for practical receiver implementations, in particular in the context of multiple-input multiple-output (MIMO) wireless communication systems. In this paper, we present a low-complexity SISO sphere-decoding algorithm, based on the single tree-search paradigm proposed originally for soft-output MIMO detection in Studer ("Soft-output sphere decoding: Algorithms and VLSI implementation," IEEE J. Sel. Areas Commun., vol. 26, no. 2, pp. 290-300, Feb. 2008). The new algorithm incorporates clipping of the extrinsic log-likelihood ratios (LLRs) into the tree-search, which results in significant complexity savings and allows to cover a large performance/complexity tradeoff region by adjusting a single parameter. Furthermore, we propose a new method for correcting approximate LLRs - resulting from sub-optimal detectors - which (often significantly) improves detection performance at low additional computational complexity.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2010.2059730