Refined Model Development and Performance Assessment of a Linear Induction-Type Electromagnetic Stirrer

To improve the production qualities of a steel mill, in-mold electromagnetic stirrers (M-EMS) are generally implemented at the continuous casting process to provide the desired stirring forces to remove those undesired inclusions and bubbles during the metal solidification. As the system is mainly o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2010-10, Vol.46 (10), p.3724-3730
1. Verfasser: Liu, Cheng-Tsung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the production qualities of a steel mill, in-mold electromagnetic stirrers (M-EMS) are generally implemented at the continuous casting process to provide the desired stirring forces to remove those undesired inclusions and bubbles during the metal solidification. As the system is mainly operated by interaction of induced eddy currents and composite traveling electromagnetic fields in the molten metal, inputs of stator currents and structures of M-EMS will dominate the entire system performance. Assisted by three-dimensional (3-D) finite-element analysis (FEA) and flux path modeling refinements, a compact analytical model with sufficient accuracy that can adequately predict the time-averaged performance of the M-EMS system at various structure- and material-compositions will be devised. From these confirmed operational indices, a convenient assessment tool for on-site operation and maintenance of the M-EMS at the metal industry has been successfully established.
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2010.2052465