Model-Based Estimation of Forest Canopy Height in Red and Austrian Pine Stands Using Shuttle Radar Topography Mission and Ancillary Data: A Proof-of-Concept Study

In this paper, accurate tree stand height retrieval is demonstrated using C-band Shuttle Radar Topography Mission (SRTM) height and ancillary data. The tree height retrieval algorithm is based on modeling uniform tree stands with a single layer of randomly oriented vegetation particles. For such sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2010-03, Vol.48 (3), p.1105-1118
Hauptverfasser: Brown, C.G., Sarabandi, K., Pierce, L.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, accurate tree stand height retrieval is demonstrated using C-band Shuttle Radar Topography Mission (SRTM) height and ancillary data. The tree height retrieval algorithm is based on modeling uniform tree stands with a single layer of randomly oriented vegetation particles. For such scattering media, the scattering phase center height, as measured by SRTM, is a function of tree height, incidence angle, and the extinction coefficient of the medium. The extinction coefficient for uniform tree stands is calculated as a function of tree height and density using allometric equations and a fractal tree model. The accuracy of the proposed algorithm is demonstrated using SRTM and TOPSAR data for 15 red pine and Austrian pine stands (TOPSAR is an airborne interferometric synthetic aperture radar). The algorithm yields root-mean-square (rms) errors of 2.5-3.6 m, which is a substantial improvement over the 6.8-8.3-m rms errors from the raw SRTM minus National Elevation Dataset Heights.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2009.2031635