Experimental Investigation and Numerical Simulation of the Structure of CH3CHO/O2/Ar Flames at Different Equivalence Ratios
The main objectives of this research consist in achieving both experimental and numerical studies of the combustion of several flames using acetaldehyde as a fuel. Experimental mole fraction profiles of chemical species (stable, radical, and intermediates) have been measured in three CH 3 CHO/O 2 /A...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main objectives of this research consist in achieving both experimental and numerical studies of the combustion of several flames using acetaldehyde as a fuel. Experimental mole fraction profiles of chemical species (stable, radical, and intermediates) have been measured in three CH
3
CHO/O
2
/Ar flat premixed flames stabilized at low pressure (50 mbar) and with equivalence ratios equal to 0.75, 1, and 1.25, respectively. The experimental setup used to determine the structure of one-dimensional laminar premixed flames consists of a molecular beam mass spectrometer system (MBMS) combined with electron impact ionization (EI). The reaction mechanisms proposed by Yasunaga et al. (
2007
) and by Marinov (
1999
) are tested by comparison of model predictions with experimental results. The results show that modeling predicts reactants and products mole fraction profiles reasonably well, but significant differences for many intermediate species remain. In order to improve the predictions for these intermediate species, several improvements on the Marinov's mechanism are suggested. They ensure a reasonably good modeling of the acetaldehyde flame structures. |
---|---|
ISSN: | 0010-2202 1563-521X |
DOI: | 10.1080/00102200903462813 |