Learning Fault Diagnosis Knowledge for a FCC Expert System by Genetic Algorithms
This paper introduces a GA-based Fault Matrix Learning System(GAFMLS) which applies Genetic Algorithms to a FCC expert system (FCCES) to learn a near-optimal fault matrix used in the fault diagnosis of an oil catalytic and cracking unit. The practical running results show that more effective fault m...
Gespeichert in:
Veröffentlicht in: | High technology letters 1997, Vol.3 (2), p.22-26 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces a GA-based Fault Matrix Learning System(GAFMLS) which applies Genetic Algorithms to a FCC expert system (FCCES) to learn a near-optimal fault matrix used in the fault diagnosis of an oil catalytic and cracking unit. The practical running results show that more effective fault matrixes can be generated by GAFMLS, and the reliability and precision of FCC expert system are improved. |
---|---|
ISSN: | 1006-6748 |