Dimension of Besicovitch–Eggleston sets in countable symbolic space

This paper is mainly concerned with Hausdorff dimensions of Besicovitch--Eggleston subsets in countable symbolic space. A notable point is that the dimension values possess a universal lower bound depending only on the underlying metric. As a consequence of the main results, we obtain Hausdorff dime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2010-05, Vol.23 (5), p.1185-1197
Hauptverfasser: Fan, Aihua, Liao, Lingmin, Ma, Jihua, Wang, Baowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1197
container_issue 5
container_start_page 1185
container_title Nonlinearity
container_volume 23
creator Fan, Aihua
Liao, Lingmin
Ma, Jihua
Wang, Baowei
description This paper is mainly concerned with Hausdorff dimensions of Besicovitch--Eggleston subsets in countable symbolic space. A notable point is that the dimension values possess a universal lower bound depending only on the underlying metric. As a consequence of the main results, we obtain Hausdorff dimension formulae for sets of real numbers with prescribed digit frequencies in their Luroth expansions.
doi_str_mv 10.1088/0951-7715/23/5/009
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_22769670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671236650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-a68373659c28205684a437a9e1cfff49d6f7c6403763175d06dd98c3800b36543</originalsourceid><addsrcrecordid>eNqNkLFOwzAURS0EEqXwA0xZkOgQ-mzHdjwWKBSpEgvMluvY1CiNQ5xW6sY_8Id8CYmCurAwWXo-9zy9i9AlhhsMeT4FyXAqBGZTQqdsCiCP0AhTjlPOsuwYjQ7AKTqL8R0A45zQEZrf-42tog9VElxya6M3Yedbs_7-_Jq_vZU2tt1XtG1MfJWYsK1avSptEvebVSi9SWKtjT1HJ06X0V78vmP0-jB_uVuky-fHp7vZMjUZ5m2qeU4F5UwakhNgPM90RoWWFhvnXCYL7oThGVDBKRasAF4UMjc0B1h1sYyO0WTwrnWp6sZvdLNXQXu1mC1VPwPgkgKhO9yx1wNbN-Fj292hNj4aW5a6smEbFeYCE8o5gw4lA2qaEGNj3cGNQfX9qr4-1denCFWsWyO70NWvX0ejS9foyvh4SBIiuOSil6cD50P9P-_kL_-XU3Xh6A8DGZNc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671236650</pqid></control><display><type>article</type><title>Dimension of Besicovitch–Eggleston sets in countable symbolic space</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Fan, Aihua ; Liao, Lingmin ; Ma, Jihua ; Wang, Baowei</creator><creatorcontrib>Fan, Aihua ; Liao, Lingmin ; Ma, Jihua ; Wang, Baowei</creatorcontrib><description>This paper is mainly concerned with Hausdorff dimensions of Besicovitch--Eggleston subsets in countable symbolic space. A notable point is that the dimension values possess a universal lower bound depending only on the underlying metric. As a consequence of the main results, we obtain Hausdorff dimension formulae for sets of real numbers with prescribed digit frequencies in their Luroth expansions.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/0951-7715/23/5/009</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Digits ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Lower bounds ; Mathematical methods in physics ; Mathematics ; Nonlinearity ; Other topics in mathematical methods in physics ; Physics ; Real numbers ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinearity, 2010-05, Vol.23 (5), p.1185-1197</ispartof><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-a68373659c28205684a437a9e1cfff49d6f7c6403763175d06dd98c3800b36543</citedby><cites>FETCH-LOGICAL-c416t-a68373659c28205684a437a9e1cfff49d6f7c6403763175d06dd98c3800b36543</cites><orcidid>0000-0001-6723-1362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0951-7715/23/5/009/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53809,53889</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22769670$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00693023$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Aihua</creatorcontrib><creatorcontrib>Liao, Lingmin</creatorcontrib><creatorcontrib>Ma, Jihua</creatorcontrib><creatorcontrib>Wang, Baowei</creatorcontrib><title>Dimension of Besicovitch–Eggleston sets in countable symbolic space</title><title>Nonlinearity</title><description>This paper is mainly concerned with Hausdorff dimensions of Besicovitch--Eggleston subsets in countable symbolic space. A notable point is that the dimension values possess a universal lower bound depending only on the underlying metric. As a consequence of the main results, we obtain Hausdorff dimension formulae for sets of real numbers with prescribed digit frequencies in their Luroth expansions.</description><subject>Digits</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Lower bounds</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Nonlinearity</subject><subject>Other topics in mathematical methods in physics</subject><subject>Physics</subject><subject>Real numbers</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkLFOwzAURS0EEqXwA0xZkOgQ-mzHdjwWKBSpEgvMluvY1CiNQ5xW6sY_8Id8CYmCurAwWXo-9zy9i9AlhhsMeT4FyXAqBGZTQqdsCiCP0AhTjlPOsuwYjQ7AKTqL8R0A45zQEZrf-42tog9VElxya6M3Yedbs_7-_Jq_vZU2tt1XtG1MfJWYsK1avSptEvebVSi9SWKtjT1HJ06X0V78vmP0-jB_uVuky-fHp7vZMjUZ5m2qeU4F5UwakhNgPM90RoWWFhvnXCYL7oThGVDBKRasAF4UMjc0B1h1sYyO0WTwrnWp6sZvdLNXQXu1mC1VPwPgkgKhO9yx1wNbN-Fj292hNj4aW5a6smEbFeYCE8o5gw4lA2qaEGNj3cGNQfX9qr4-1denCFWsWyO70NWvX0ejS9foyvh4SBIiuOSil6cD50P9P-_kL_-XU3Xh6A8DGZNc</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Fan, Aihua</creator><creator>Liao, Lingmin</creator><creator>Ma, Jihua</creator><creator>Wang, Baowei</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6723-1362</orcidid></search><sort><creationdate>20100501</creationdate><title>Dimension of Besicovitch–Eggleston sets in countable symbolic space</title><author>Fan, Aihua ; Liao, Lingmin ; Ma, Jihua ; Wang, Baowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-a68373659c28205684a437a9e1cfff49d6f7c6403763175d06dd98c3800b36543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Digits</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Lower bounds</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Nonlinearity</topic><topic>Other topics in mathematical methods in physics</topic><topic>Physics</topic><topic>Real numbers</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Aihua</creatorcontrib><creatorcontrib>Liao, Lingmin</creatorcontrib><creatorcontrib>Ma, Jihua</creatorcontrib><creatorcontrib>Wang, Baowei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Aihua</au><au>Liao, Lingmin</au><au>Ma, Jihua</au><au>Wang, Baowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimension of Besicovitch–Eggleston sets in countable symbolic space</atitle><jtitle>Nonlinearity</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>23</volume><issue>5</issue><spage>1185</spage><epage>1197</epage><pages>1185-1197</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><abstract>This paper is mainly concerned with Hausdorff dimensions of Besicovitch--Eggleston subsets in countable symbolic space. A notable point is that the dimension values possess a universal lower bound depending only on the underlying metric. As a consequence of the main results, we obtain Hausdorff dimension formulae for sets of real numbers with prescribed digit frequencies in their Luroth expansions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0951-7715/23/5/009</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6723-1362</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2010-05, Vol.23 (5), p.1185-1197
issn 0951-7715
1361-6544
language eng
recordid cdi_pascalfrancis_primary_22769670
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Digits
Exact sciences and technology
Global analysis, analysis on manifolds
Lower bounds
Mathematical methods in physics
Mathematics
Nonlinearity
Other topics in mathematical methods in physics
Physics
Real numbers
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Dimension of Besicovitch–Eggleston sets in countable symbolic space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimension%20of%20Besicovitch%E2%80%93Eggleston%20sets%20in%20countable%20symbolic%20space&rft.jtitle=Nonlinearity&rft.au=Fan,%20Aihua&rft.date=2010-05-01&rft.volume=23&rft.issue=5&rft.spage=1185&rft.epage=1197&rft.pages=1185-1197&rft.issn=0951-7715&rft.eissn=1361-6544&rft_id=info:doi/10.1088/0951-7715/23/5/009&rft_dat=%3Cproquest_pasca%3E1671236650%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671236650&rft_id=info:pmid/&rfr_iscdi=true