Dimension of Besicovitch–Eggleston sets in countable symbolic space

This paper is mainly concerned with Hausdorff dimensions of Besicovitch--Eggleston subsets in countable symbolic space. A notable point is that the dimension values possess a universal lower bound depending only on the underlying metric. As a consequence of the main results, we obtain Hausdorff dime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2010-05, Vol.23 (5), p.1185-1197
Hauptverfasser: Fan, Aihua, Liao, Lingmin, Ma, Jihua, Wang, Baowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is mainly concerned with Hausdorff dimensions of Besicovitch--Eggleston subsets in countable symbolic space. A notable point is that the dimension values possess a universal lower bound depending only on the underlying metric. As a consequence of the main results, we obtain Hausdorff dimension formulae for sets of real numbers with prescribed digit frequencies in their Luroth expansions.
ISSN:0951-7715
1361-6544
DOI:10.1088/0951-7715/23/5/009