Dimension of Besicovitch–Eggleston sets in countable symbolic space
This paper is mainly concerned with Hausdorff dimensions of Besicovitch--Eggleston subsets in countable symbolic space. A notable point is that the dimension values possess a universal lower bound depending only on the underlying metric. As a consequence of the main results, we obtain Hausdorff dime...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2010-05, Vol.23 (5), p.1185-1197 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is mainly concerned with Hausdorff dimensions of Besicovitch--Eggleston subsets in countable symbolic space. A notable point is that the dimension values possess a universal lower bound depending only on the underlying metric. As a consequence of the main results, we obtain Hausdorff dimension formulae for sets of real numbers with prescribed digit frequencies in their Luroth expansions. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/0951-7715/23/5/009 |