Available-to-promise (ATP) systems: a classification and framework for analysis

Available-to-promise (ATP) systems deal with a number of managerial decisions related to order capture activities in a company, including order acceptance/rejection, due date setting, and resource scheduling. These different but interrelated decisions have often been studied in an isolated manner, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2010-06, Vol.48 (11), p.3079-3103
Hauptverfasser: Framinan, Jose M., Leisten, Rainer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Available-to-promise (ATP) systems deal with a number of managerial decisions related to order capture activities in a company, including order acceptance/rejection, due date setting, and resource scheduling. These different but interrelated decisions have often been studied in an isolated manner, and, to the best of our knowledge, no framework has been presented to integrate them into the broader perspective of order capture. This paper attempts to provide a general framework for ATP-related decisions. By doing so, we: (1) identify the different decision problems to be addressed; (2) present the different literature-based models supporting related decisions into a coherent framework; and (3) review the main contributions in the literature for each one of these. We first describe different approaches for order capture available in the literature, depending on two parameters related to the application context of ATP systems, namely the inclusion of explicit information about due dates in the decision model, and the level of integration among decisions. According to these parameters, up to six approaches for ATP-related decisions are identified. Secondly, we show the subsequent decision problems derived from the different approaches, and describe the main issues and key references involving each one of these decision problems. Finally, a number of conclusions and future research lines are discussed.
ISSN:0020-7543
1366-588X
DOI:10.1080/00207540902810544