Improved Delay-Dependent Stability Condition of Discrete Recurrent Neural Networks With Time-Varying Delays

This brief investigates the problem of global exponential stability analysis for discrete recurrent neural networks with time-varying delays. In terms of linear matrix inequality (LMI) approach, a novel delay-dependent stability criterion is established for the considered recurrent neural networks v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2010-04, Vol.21 (4), p.692-697
Hauptverfasser: Wu, Zhengguang, Su, Hongye, Chu, Jian, Zhou, Wuneng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This brief investigates the problem of global exponential stability analysis for discrete recurrent neural networks with time-varying delays. In terms of linear matrix inequality (LMI) approach, a novel delay-dependent stability criterion is established for the considered recurrent neural networks via a new Lyapunov function. The obtained condition has less conservativeness and less number of variables than the existing ones. Numerical example is given to demonstrate the effectiveness of the proposed method.
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/TNN.2010.2042172