Design of reproducible polarized and non-polarized edge filters using genetic algorithm
Recent advancement in optical fibre communications technology is partly due to the advancement of optical thin film technology. The advancement of optical thin film technology includes the development of new and existing optical filter design methods. The genetic algorithm is one of the new design m...
Gespeichert in:
Veröffentlicht in: | Journal of optics (2010) 2010-03, Vol.12 (3), p.035401-035401 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent advancement in optical fibre communications technology is partly due to the advancement of optical thin film technology. The advancement of optical thin film technology includes the development of new and existing optical filter design methods. The genetic algorithm is one of the new design methods that show promising results in designing a number of complicated design specifications. It is the finding of this study that the genetic algorithm design method, through its optimization capability, can give more reliable and reproducible designs of any specifications. The design method in this study optimizes the thickness of each layer to get to the best possible solution. Its capability and unavoidable limitations in designing polarized and non-polarized edge filters from absorptive and dispersive materials is well demonstrated. It is also demonstrated that polarized and non-polarized designs from the genetic algorithm are reproducible with great success. This research has accomplished the great task of formulating a computer program using the genetic algorithm in a Matlab environment for the design of a reproducible polarized and non-polarized filters of any sort from any kind of materials. |
---|---|
ISSN: | 2040-8986 2040-8978 2040-8986 |
DOI: | 10.1088/2040-8978/12/3/035401 |