Part I: Mixed-Signal Performance of Various High-Voltage Drain-Extended MOS Devices
In this paper, the optimization issues of various drain-extended devices are discussed for input/output applications. The mixed-signal performance, impact of process variations, and gate oxide reliability of these devices are compared. Lightly doped drain MOS (LDDMOS) was found to have a moderate pe...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2010-02, Vol.57 (2), p.448-457 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the optimization issues of various drain-extended devices are discussed for input/output applications. The mixed-signal performance, impact of process variations, and gate oxide reliability of these devices are compared. Lightly doped drain MOS (LDDMOS) was found to have a moderate performance advantage as compared to shallow trench isolation (STI) and non-STI drain-extended MOS (DeMOS) devices. Non-STI DeMOS devices have improved circuit performance but suffer from the worst gate oxide reliability. Incorporating an STI region underneath the gate-drain overlap improves the gate oxide reliability, although it degrades the mixed-signal characteristics of the device. The single-halo nature of DeMOS devices has been shown to be effective in suppressing the short-channel effects. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2009.2036796 |