Closed-loop control of vibrational population in CO2

An adaptive closed-loop feedback system is used to determine the optimal pulse shapes for manipulating the branching ratio of CO2+ following ionization by an intense laser pulse. For this target, selecting between the CO2+ and C+ + O+ final states requires control of the vibrational population distr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. B, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2010-01, Vol.43 (1), p.015101-015101 (7)
Hauptverfasser: Wells, E, McKenna, J, Sayler, A M, Jochim, Bethany, Gregerson, Neal, Averin, R, Zohrabi, M, Carnes, K D, Ben-Itzhak, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An adaptive closed-loop feedback system is used to determine the optimal pulse shapes for manipulating the branching ratio of CO2+ following ionization by an intense laser pulse. For this target, selecting between the CO2+ and C+ + O+ final states requires control of the vibrational population distribution in the transient CO2+. The ability to both suppress and enhance CO2+ relative to C+ + O+ is observed, with shaped pulses surpassing a transform-limited pulse by factors of about 10 for suppression and 2 for enhancement. When optimizing small channels, such as non-dissociative CO2+, we demonstrate that a feedback signal obtained via a pulse counting technique is more robust than the more typical current mode signal collection. Furthermore, we demonstrate how the pulse counting technique allows control of a coincidence channel, specifically C+ + O+, by using logical electronic gates. Using these coincidence signals allows more specific final states to be incorporated into closed-loop control.
ISSN:0953-4075
1361-6455
DOI:10.1088/0953-4075/43/1/015101