Deep Oxidative Desulfurization of Fuel Oils Catalyzed by Decatungstates in the Ionic Liquid of [Bmim]PF6

Three decatungstates with short carbon chains as the cations, such as tetrabutylammonium decatungstate ([(C4H9)4N]4W10O32), tetramethylammonium decatungstate ([(CH3)4N]4W10O32), and benzyltriethylammonium decatungstate ([(C2H5)3NC7H7]4W10O32), were synthesized and then used as a catalyst in the extr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2009-10, Vol.48 (19), p.9034-9039
Hauptverfasser: Li, Huaming, Jiang, Xue, Zhu, Wenshuai, Lu, Jidong, Shu, Huoming, Yan, Yongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three decatungstates with short carbon chains as the cations, such as tetrabutylammonium decatungstate ([(C4H9)4N]4W10O32), tetramethylammonium decatungstate ([(CH3)4N]4W10O32), and benzyltriethylammonium decatungstate ([(C2H5)3NC7H7]4W10O32), were synthesized and then used as a catalyst in the extractive catalytic oxidative desulfurization (ECODS) system in the ionic liquid (IL) of [Bmim]PF6, and hydrogen dioxide (H2O2) was used as an oxidant. During the optimized process, the sulfur level in the model oil (1000 ppm S) can be reduced to 8 ppm, which is consistent with the standards of deep desulfurization. The temperature, the reaction time, and the amount of H2O2 and catalyst, as well as the type of the cations of decatungstates, all played vital roles in desulfurization efficiency, which were studied in detail to optimize the reaction conditions. The system could be recycled five times before the sulfur removal decreased sharply.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie900754f