Differential Pulse Polarographic Determination of Gallium and Niobium in Samples After Preconcentration of Their Quinolin-8-Olate Complexes on Microcrystalline Naphthalene

Gallium and niobium react with quinolin-8-ol to form water insoluble complexes which are quantitatively adsorbed on microcrystalline naphthalene from the large volume of their aqueous solutions in the pH range of 3.5 - 8.2 and 6.2 - 9.4, respectively. After filtration, the metal complexes were desor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical letters 1998-03, Vol.31 (5), p.841-857
Hauptverfasser: Puri, Swati, Dubey, Rajesh Kumar, Gupta, Mahinder Kumar, Puri, Bal Krishan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gallium and niobium react with quinolin-8-ol to form water insoluble complexes which are quantitatively adsorbed on microcrystalline naphthalene from the large volume of their aqueous solutions in the pH range of 3.5 - 8.2 and 6.2 - 9.4, respectively. After filtration, the metal complexes were desorbed with 10 ml of HCl (1M for Ga and 11 M for Nb) and determined by using a differential pulse polarograph (DPP). The dissolved oxygen is removed by adding a few milliliters of 4% NaBH 4 solution in the case of gallium. The detection limits are 0.04 ppm for gallium and 0.05 ppm for niobium at the minimum instrumental settings (signal to noise ratio = 2). The linearities are maintained in the concentration range 0.1 - 5.0 ppm for gallium and 0.4 - 6.0 ppm for niobium with correlation factors of 0.9997 and 0.9996 and relative standard deviations of 0.81 and 0.95%, respectively. Characterization of the electroactive process included an examination of the degree of reversibility. Various parameters such as the effect of pH volume of aqueous phase, reagent and naphthalene concentrations and the interference of a large number of anions and cations on the estimation of these elements were studied in detail. The method is found to be highly selective, fairly sensitive, rapid, simple and economical. It has been applied for the trace determination of gallium and niobium in various standard alloys and may be applied safely for the analyses of complex materials like environmental samples and ores. *On study leave from Zakir Husain College, University of Delhi, Delhi - 110007.
ISSN:0003-2719
1532-236X
DOI:10.1080/00032719808002822