OPTIMUM DESIGN OF PROCESS CONDITIONS TO MINIMIZE RESIDUAL STRESSES IN INJECTION-MOLDED PARTS
An inverse design method has been developed to obtain an optimum mold-wall-temperature history that produces an injection-molded part with minimum residual-stress distribution. Optimization has been formulated within the framework of nonlinear least squares and a modified Gauss-Newton method with a...
Gespeichert in:
Veröffentlicht in: | Journal of thermal stresses 1998-03, Vol.21 (2), p.141-155 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An inverse design method has been developed to obtain an optimum mold-wall-temperature history that produces an injection-molded part with minimum residual-stress distribution. Optimization has been formulated within the framework of nonlinear least squares and a modified Gauss-Newton method with a zeroth-order regularization technique. The transient temperature field has been generated based upon a purely viscous formulation of the filling and post-filling stages, and the cooling-induced residual stresses have been calculated employing a thermo-rheologically simple, linear viscoelastic model. The present study shows that, with an optimum cooling history, maximum residual-stress levels can be reduced significantly for both unconstrained and constrained vitrification with holding pressure. |
---|---|
ISSN: | 0149-5739 1521-074X |
DOI: | 10.1080/01495739808956140 |