Data assimilation for the Navier–Stokes- α equations

The well-posedness of the data assimilation problem for the Navier–Stokes- α equations on a bounded three-dimensional domain is investigated. The data assimilation procedures under consideration are the adjoint method of variational data assimilation (4D-Var) and the method of continuous data assimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D 2009, Vol.238 (18), p.1957-1974
1. Verfasser: Korn, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The well-posedness of the data assimilation problem for the Navier–Stokes- α equations on a bounded three-dimensional domain is investigated. The data assimilation procedures under consideration are the adjoint method of variational data assimilation (4D-Var) and the method of continuous data assimilation. Concerning the adjoint method the existence of optimal initial conditions with respect to an observation-dependent cost functional is proven, the optimizers are characterized by a first-order necessary condition involving the adjoint linearized Navier–Stokes- α equations and conditions for the uniqueness of the initial conditions are given. Well-posedness of the continuous data assimilation problem is proven and convergence rates in terms of observational resolution are provided.
ISSN:0167-2789
1872-8022
DOI:10.1016/j.physd.2009.07.008