Non-trivial III in the Jacobian of an infinite family of curves of genus 2

Nous donnons une famille infinie de courbes de genre 2 dont la Jacobienne possède des éléments non triviaux du groupe de Tate-Shafarevich pour une descente via l'isogénie de Richelot. Nous le prouvons en effectuant une descente via l'isogénie de Richelot et une 2-descente complète sur la J...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal de theorie des nombres de bordeaux 2009-01, Vol.21 (1), p.1-13
Hauptverfasser: ARNTH-JENSEN, Anna, FLYNN, E. Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nous donnons une famille infinie de courbes de genre 2 dont la Jacobienne possède des éléments non triviaux du groupe de Tate-Shafarevich pour une descente via l'isogénie de Richelot. Nous le prouvons en effectuant une descente via l'isogénie de Richelot et une 2-descente complète sur la Jacobienne isogène. Nous donnons également un modèle explicite d'une famille associée de surfaces qui violent le principe de Hasse. We give an infinite family of curves of genus 2 whose Jacobians have non-trivial members of the Tate-Shafarevich group for descent via Richelot isogeny. We prove this by performing a descent via Richelot isogeny and a complete 2-descent on the isogenous Jacobian. We also give an explicit model of an associated family of surfaces which violate the Hasse principle.
ISSN:1246-7405
2118-8572
DOI:10.5802/jtnb.654