Solving Boolean equations using ROSOP forms

Boolean equations are important tools in digital logic. Previous algorithms for solving Boolean equations are based on the Boolean algebra of disjoint SOP forms. In this paper, we develop a new Boolean algebra with more efficient Boolean operation algorithms, called the reduced ordered SOP (ROSOP) f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 1998-02, Vol.47 (2), p.171-177
Hauptverfasser: Yuke Wang, McCrosky, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Boolean equations are important tools in digital logic. Previous algorithms for solving Boolean equations are based on the Boolean algebra of disjoint SOP forms. In this paper, we develop a new Boolean algebra with more efficient Boolean operation algorithms, called the reduced ordered SOP (ROSOP) forms, which are canonical representations. ROSOPs are closely related to the well-known OBDD data structure. The results here also show the algebraic structure of OBDDs.
ISSN:0018-9340
1557-9956
DOI:10.1109/12.663763