Optimal Monotone Encodings

Moran, Naor, and Segev have asked what is the minimal r=r(n, k) for which there exists an (n,k)-monotone encoding of length r, i.e., a monotone injective function from subsets of size up to k of {1, 2,..., n} to r bits. Monotone encodings are relevant to the study of tamper-proof data structures and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2009-03, Vol.55 (3), p.1343-1353
Hauptverfasser: Alon, N., Hod, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Moran, Naor, and Segev have asked what is the minimal r=r(n, k) for which there exists an (n,k)-monotone encoding of length r, i.e., a monotone injective function from subsets of size up to k of {1, 2,..., n} to r bits. Monotone encodings are relevant to the study of tamper-proof data structures and arise also in the design of broadcast schemes in certain communication networks. To answer this question, we develop a relaxation of k-superimposed families, which we call alpha-fraction k -multiuser tracing ((k, alpha)-FUT (fraction user-tracing) families). We show that r(n, k) = Theta(k log(n/k)) by proving tight asymptotic lower and upper bounds on the size of (k, alpha)-FUT families and by constructing an (n,k)-monotone encoding of length O(k log(n/k)). We also present an explicit construction of an (n, 2)-monotone encoding of length 2 log n+O(1), which is optimal up to an additive constant.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2008.2011507