Energy distribution of bombarding ions in plasma etching of dielectrics

In plasma etching for microelectronics fabrication, a sheath electric field accelerates ions into the substrate so they strike at normal incidence, contributing energy and reactive species to enable anisotropic etch profiles. The energy of the bombarding ions is typically controlled coarsely with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma sources science & technology 2009-05, Vol.18 (2), p.025009-025009 (8)
Hauptverfasser: Buzzi, F L, Ting, Y-H, Wendt, A E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In plasma etching for microelectronics fabrication, a sheath electric field accelerates ions into the substrate so they strike at normal incidence, contributing energy and reactive species to enable anisotropic etch profiles. The energy of the bombarding ions is typically controlled coarsely with a sinusoidal bias voltage applied to the substrate electrode, producing a broad bimodal ion energy distribution (IED) at the substrate. By systematically tailoring the shape of the waveform, the energies and relative fluxes of the two IED peaks are varied independently over a 100-500 eV range in a fluorocarbon-based helicon plasma, while silicon dioxide and photoresist etch rates are monitored. A 100 eV IED peak was combined with a higher energy peak, with the energy and relative flux of the high energy group as variables in the experiment. A relatively small contribution of high energy ions is found to lead to considerable etch rate enhancement, higher than predicted by a linear combination of single-peak etch rates at the two energies. Because high energy ion bombardment is known to suppress fluorocarbon deposition, it seems likely that changes in surface chemical composition in their presence enhances the contribution of lower energy ions to etching reactions.
ISSN:0963-0252
1361-6595
DOI:10.1088/0963-0252/18/2/025009