Low-complexity linear frequency domain equalization for continuous phase modulation
In this paper, we develop a new low-complexity linear frequency domain equalization (FDE) approach for continuous phase modulated (CPM) signals. As a CPM signal is highly correlated, calculating a linear minimum mean square error (MMSE) channel equalizer requires the inversion of a nondiagonal matri...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2009-03, Vol.8 (3), p.1435-1445 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we develop a new low-complexity linear frequency domain equalization (FDE) approach for continuous phase modulated (CPM) signals. As a CPM signal is highly correlated, calculating a linear minimum mean square error (MMSE) channel equalizer requires the inversion of a nondiagonal matrix, even in the frequency domain. In order to regain the FDE advantage of reduced computational complexity, we show that this matrix can be approximated by a block-diagonal matrix without performance loss. Moreover, our MMSE equalizer can be simplified to a low-complexity zero-forcing equalizer. The proposed techniques can be applied to any CPM scheme. To support this theory we present a new polyphase matrix model, valid for any block-based CPM system. Simulation results in a 60 GHz environment show that our reduced-complexity MMSE equalizer significantly outperforms the state of the art linear MMSE receiver for large modulation indices, while it performs only slightly worse for small ones. |
---|---|
ISSN: | 1536-1276 1558-2248 |
DOI: | 10.1109/TWC.2009.080146 |