Joint Source-Channel Distortion Modeling for MPEG-4 Video

Multimedia communication has become one of the main applications in commercial wireless systems. Multimedia sources, mainly consisting of digital images and videos, have high bandwidth requirements. Since bandwidth is a valuable resource, it is important that its use should be optimized for image an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2009-01, Vol.18 (1), p.90-105
Hauptverfasser: Sabir, M.F., Heath, R.W., Bovik, A.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multimedia communication has become one of the main applications in commercial wireless systems. Multimedia sources, mainly consisting of digital images and videos, have high bandwidth requirements. Since bandwidth is a valuable resource, it is important that its use should be optimized for image and video communication. Therefore, interest in developing new joint source-channel coding (JSCC) methods for image and video communication is increasing. Design of any JSCC scheme requires an estimate of the distortion at different source coding rates and under different channel conditions. The common approach to obtain this estimate is via simulations or operational rate-distortion curves. These approaches, however, are computationally intensive and, hence, not feasible for real-time coding and transmission applications. A more feasible approach to estimate distortion is to develop models that predict distortion at different source coding rates and under different channel conditions. Based on this idea, we present a distortion model for estimating the distortion due to quantization and channel errors in MPEG-4 compressed video streams at different source coding rates and channel bit error rates. This model takes into account important aspects of video compression such as transform coding, motion compensation, and variable length coding. Results show that our model estimates distortion within 1.5 dB of actual simulation values in terms of peak-signal-to-noise ratio.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2008.2005819