The Minimum Distance of Turbo-Like Codes

Worst-case upper bounds are derived on the minimum distance of parallel concatenated turbo codes, serially concatenated convolutional codes, repeat-accumulate codes, repeat-convolute codes, and generalizations of these codes obtained by allowing nonlinear and large-memory constituent codes. It is sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2009-01, Vol.55 (1), p.6-15
Hauptverfasser: Bazzi, L., Mahdian, M., Spielman, D.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Worst-case upper bounds are derived on the minimum distance of parallel concatenated turbo codes, serially concatenated convolutional codes, repeat-accumulate codes, repeat-convolute codes, and generalizations of these codes obtained by allowing nonlinear and large-memory constituent codes. It is shown that parallel-concatenated turbo codes and repeat-convolute codes with sub-linear memory are asymptotically bad. It is also shown that depth-two serially concatenated codes with constant-memory outer codes and sublinear-memory inner codes are asymptotically bad. Most of these upper bounds hold even when the convolutional encoders are replaced by general finite-state automata encoders. In contrast, it is proven that depth-three serially concatenated codes obtained by concatenating a repetition code with two accumulator codes through random permutations can be asymptotically good.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2008.2008114