The Minimum Distance of Turbo-Like Codes
Worst-case upper bounds are derived on the minimum distance of parallel concatenated turbo codes, serially concatenated convolutional codes, repeat-accumulate codes, repeat-convolute codes, and generalizations of these codes obtained by allowing nonlinear and large-memory constituent codes. It is sh...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2009-01, Vol.55 (1), p.6-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Worst-case upper bounds are derived on the minimum distance of parallel concatenated turbo codes, serially concatenated convolutional codes, repeat-accumulate codes, repeat-convolute codes, and generalizations of these codes obtained by allowing nonlinear and large-memory constituent codes. It is shown that parallel-concatenated turbo codes and repeat-convolute codes with sub-linear memory are asymptotically bad. It is also shown that depth-two serially concatenated codes with constant-memory outer codes and sublinear-memory inner codes are asymptotically bad. Most of these upper bounds hold even when the convolutional encoders are replaced by general finite-state automata encoders. In contrast, it is proven that depth-three serially concatenated codes obtained by concatenating a repetition code with two accumulator codes through random permutations can be asymptotically good. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2008.2008114 |