Universal Denoising of Discrete-Time Continuous-Amplitude Signals

We consider the problem of reconstructing a discrete-time signal (sequence) with continuous-valued components corrupted by a known memoryless channel. When performance is measured using a per-symbol loss function satisfying mild regularity conditions, we develop a sequence of denoisers that, althoug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2008-12, Vol.54 (12), p.5632-5660
Hauptverfasser: Sivaramakrishnan, K., Tsachy Weissman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of reconstructing a discrete-time signal (sequence) with continuous-valued components corrupted by a known memoryless channel. When performance is measured using a per-symbol loss function satisfying mild regularity conditions, we develop a sequence of denoisers that, although independent of the distribution of the underlying ldquocleanrdquo sequence, is universally optimal in the limit of large sequence length. This sequence of denoisers is universal in the sense of performing as well as any sliding-window denoising scheme which may be optimized for the underlying clean signal. Our results are initially developed in a ldquosemi-stochasticrdquo setting, where the noiseless signal is an unknown individual sequence, and the only source of randomness is due to the channel noise. It is subsequently shown that in the fully stochastic setting, where the noiseless sequence is a stationary stochastic process, our schemes universally attain optimum performance. The proposed schemes draw from nonparametric density estimation techniques and are practically implementable. We demonstrate efficacy of the proposed schemes in denoising Gray-scale images in the conventional additive white Gaussian noise (AWGN) setting, with additional promising results for less conventional noise distributions.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2008.2006438