An Ultrafine, Water-Based Condensation Particle Counter and its Evaluation under Field Conditions
An ultrafine, water-based condensation particle counter (U-WCPC, TSI Model 3786) has been compared to a butanol-based ultrafine counter (U-BCPC, TSI Model 3025) for measurement of atmospheric and freeway-tunnel aerosols. The U-WCPC utilizes a warm, wet-walled growth tube to activate and grow particl...
Gespeichert in:
Veröffentlicht in: | Aerosol science and technology 2008-10, Vol.42 (10), p.862-871 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An ultrafine, water-based condensation particle counter (U-WCPC, TSI Model 3786) has been compared to a butanol-based ultrafine counter (U-BCPC, TSI Model 3025) for measurement of atmospheric and freeway-tunnel aerosols. The U-WCPC utilizes a warm, wet-walled growth tube to activate and grow particles through water condensation in a laminar-flow. It has an aerosol sampling rate of 0.3 L/min, and a nominal detection limit near 3 nm. Several field comparisons were made to the butanol-based instrument with the same nominal detection limit. For measurements of size-selected aerosols with diameters of 5 nm and larger the two instruments generally agreed, with a mean response within 5%. At 3 nm particle size differences were observed, and these differences varied with the data set. Measurements of ambient aerosol in Boulder, Colorado showed higher counting efficiency at 3 nm with the U-BCPC, while in a California freeway tunnel the opposite trend was observed, with higher counting efficiencies at 3 nm observed by the U-WCPC. For direct measurement of atmospheric aerosols, the two types of instruments yielded equivalent concentrations, independent of particle number concentration. |
---|---|
ISSN: | 0278-6826 1521-7388 |
DOI: | 10.1080/02786820802339579 |