Computing a Lower Bound of the Smallest Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix

In this correspondence, several algorithms to compute a lower bound of the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix are described and compared in terms of accuracy and computational efficiency. Exploiting the Toeplitz structure of the considered matrix, new theoretical in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2008-10, Vol.54 (10), p.4726-4731
Hauptverfasser: Laudadio, T., Mastronardi, N., Van Barel, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4731
container_issue 10
container_start_page 4726
container_title IEEE transactions on information theory
container_volume 54
creator Laudadio, T.
Mastronardi, N.
Van Barel, M.
description In this correspondence, several algorithms to compute a lower bound of the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix are described and compared in terms of accuracy and computational efficiency. Exploiting the Toeplitz structure of the considered matrix, new theoretical insights are derived and an efficient implementation of some of the aforementioned algorithms is provided.
doi_str_mv 10.1109/TIT.2008.928966
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_20679879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4626067</ieee_id><sourcerecordid>34559584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-72323c92e04e307f9cc51c40bbf1aa064773cdfd56643103dc980a24afb5fdfe3</originalsourceid><addsrcrecordid>eNp90T1vFDEQBmALEYkjUFPQWEhAtRd_f5TkSEKki0DKUVs-7zg42l0f691A8uvx6aIUFKlG1jwzGutF6B0lS0qJPdlcbpaMELO0zFilXqAFlVI3VknxEi0IoaaxQphX6HUpt_UpJGULFFa5381TGm6wx-v8B0Z8muehxTni6Rfg6953HZQJn6UbGO58N8O-5fH1fd_DNKaAf-SSpnQHzVeIaUgT4E2GXZemB3zlq_j7Bh1F3xV4-1iP0c_zs83qW7P-fnG5-rJuAjd0ajTjjAfLgAjgREcbgqRBkO02Uu-JElrz0MZWKiU4JbwN1hDPhI9bGdsI_Bh9Puzdjfn3XI92fSoBus4PkOfijJZEam5UlZ-elVxIaaURFX74D97meRzqLxy10jLJ-B6dHFAYcykjRLcbU-_He0eJ22fjajZun407ZFMnPj6u9SX4Lo5-CKk8jTGitDXaVvf-4BIAPLWFYqoK_g_GbJcp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195925234</pqid></control><display><type>article</type><title>Computing a Lower Bound of the Smallest Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix</title><source>IEEE/IET Electronic Library</source><creator>Laudadio, T. ; Mastronardi, N. ; Van Barel, M.</creator><creatorcontrib>Laudadio, T. ; Mastronardi, N. ; Van Barel, M.</creatorcontrib><description>In this correspondence, several algorithms to compute a lower bound of the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix are described and compared in terms of accuracy and computational efficiency. Exploiting the Toeplitz structure of the considered matrix, new theoretical insights are derived and an efficient implementation of some of the aforementioned algorithms is provided.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2008.928966</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Algorithms ; Applied sciences ; Cholesky factorization ; Computation ; Computational efficiency ; Computer networks ; Control system synthesis ; Councils ; Eigenvalues ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Information theory ; Information, signal and communications theory ; Iterative algorithms ; Levinson-Durbin algorithm ; Lower bounds ; Mathematics ; Matrix ; QR factorization ; Read-write memory ; Signal processing algorithms ; Sun ; Symmetric matrices ; symmetric positive-definite matrix ; Telecommunications and information theory ; Toeplitz matrix</subject><ispartof>IEEE transactions on information theory, 2008-10, Vol.54 (10), p.4726-4731</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-72323c92e04e307f9cc51c40bbf1aa064773cdfd56643103dc980a24afb5fdfe3</citedby><cites>FETCH-LOGICAL-c381t-72323c92e04e307f9cc51c40bbf1aa064773cdfd56643103dc980a24afb5fdfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4626067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4626067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20679879$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Laudadio, T.</creatorcontrib><creatorcontrib>Mastronardi, N.</creatorcontrib><creatorcontrib>Van Barel, M.</creatorcontrib><title>Computing a Lower Bound of the Smallest Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In this correspondence, several algorithms to compute a lower bound of the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix are described and compared in terms of accuracy and computational efficiency. Exploiting the Toeplitz structure of the considered matrix, new theoretical insights are derived and an efficient implementation of some of the aforementioned algorithms is provided.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Cholesky factorization</subject><subject>Computation</subject><subject>Computational efficiency</subject><subject>Computer networks</subject><subject>Control system synthesis</subject><subject>Councils</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Iterative algorithms</subject><subject>Levinson-Durbin algorithm</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Matrix</subject><subject>QR factorization</subject><subject>Read-write memory</subject><subject>Signal processing algorithms</subject><subject>Sun</subject><subject>Symmetric matrices</subject><subject>symmetric positive-definite matrix</subject><subject>Telecommunications and information theory</subject><subject>Toeplitz matrix</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90T1vFDEQBmALEYkjUFPQWEhAtRd_f5TkSEKki0DKUVs-7zg42l0f691A8uvx6aIUFKlG1jwzGutF6B0lS0qJPdlcbpaMELO0zFilXqAFlVI3VknxEi0IoaaxQphX6HUpt_UpJGULFFa5381TGm6wx-v8B0Z8muehxTni6Rfg6953HZQJn6UbGO58N8O-5fH1fd_DNKaAf-SSpnQHzVeIaUgT4E2GXZemB3zlq_j7Bh1F3xV4-1iP0c_zs83qW7P-fnG5-rJuAjd0ajTjjAfLgAjgREcbgqRBkO02Uu-JElrz0MZWKiU4JbwN1hDPhI9bGdsI_Bh9Puzdjfn3XI92fSoBus4PkOfijJZEam5UlZ-elVxIaaURFX74D97meRzqLxy10jLJ-B6dHFAYcykjRLcbU-_He0eJ22fjajZun407ZFMnPj6u9SX4Lo5-CKk8jTGitDXaVvf-4BIAPLWFYqoK_g_GbJcp</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Laudadio, T.</creator><creator>Mastronardi, N.</creator><creator>Van Barel, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081001</creationdate><title>Computing a Lower Bound of the Smallest Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix</title><author>Laudadio, T. ; Mastronardi, N. ; Van Barel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-72323c92e04e307f9cc51c40bbf1aa064773cdfd56643103dc980a24afb5fdfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Cholesky factorization</topic><topic>Computation</topic><topic>Computational efficiency</topic><topic>Computer networks</topic><topic>Control system synthesis</topic><topic>Councils</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Iterative algorithms</topic><topic>Levinson-Durbin algorithm</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Matrix</topic><topic>QR factorization</topic><topic>Read-write memory</topic><topic>Signal processing algorithms</topic><topic>Sun</topic><topic>Symmetric matrices</topic><topic>symmetric positive-definite matrix</topic><topic>Telecommunications and information theory</topic><topic>Toeplitz matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laudadio, T.</creatorcontrib><creatorcontrib>Mastronardi, N.</creatorcontrib><creatorcontrib>Van Barel, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laudadio, T.</au><au>Mastronardi, N.</au><au>Van Barel, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing a Lower Bound of the Smallest Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>54</volume><issue>10</issue><spage>4726</spage><epage>4731</epage><pages>4726-4731</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In this correspondence, several algorithms to compute a lower bound of the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix are described and compared in terms of accuracy and computational efficiency. Exploiting the Toeplitz structure of the considered matrix, new theoretical insights are derived and an efficient implementation of some of the aforementioned algorithms is provided.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2008.928966</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2008-10, Vol.54 (10), p.4726-4731
issn 0018-9448
1557-9654
language eng
recordid cdi_pascalfrancis_primary_20679879
source IEEE/IET Electronic Library
subjects Accuracy
Algorithms
Applied sciences
Cholesky factorization
Computation
Computational efficiency
Computer networks
Control system synthesis
Councils
Eigenvalues
Eigenvalues and eigenfunctions
Exact sciences and technology
Information theory
Information, signal and communications theory
Iterative algorithms
Levinson-Durbin algorithm
Lower bounds
Mathematics
Matrix
QR factorization
Read-write memory
Signal processing algorithms
Sun
Symmetric matrices
symmetric positive-definite matrix
Telecommunications and information theory
Toeplitz matrix
title Computing a Lower Bound of the Smallest Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20a%20Lower%20Bound%20of%20the%20Smallest%20Eigenvalue%20of%20a%20Symmetric%20Positive-Definite%20Toeplitz%20Matrix&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Laudadio,%20T.&rft.date=2008-10-01&rft.volume=54&rft.issue=10&rft.spage=4726&rft.epage=4731&rft.pages=4726-4731&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2008.928966&rft_dat=%3Cproquest_RIE%3E34559584%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195925234&rft_id=info:pmid/&rft_ieee_id=4626067&rfr_iscdi=true