Computing a Lower Bound of the Smallest Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix
In this correspondence, several algorithms to compute a lower bound of the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix are described and compared in terms of accuracy and computational efficiency. Exploiting the Toeplitz structure of the considered matrix, new theoretical in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2008-10, Vol.54 (10), p.4726-4731 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4731 |
---|---|
container_issue | 10 |
container_start_page | 4726 |
container_title | IEEE transactions on information theory |
container_volume | 54 |
creator | Laudadio, T. Mastronardi, N. Van Barel, M. |
description | In this correspondence, several algorithms to compute a lower bound of the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix are described and compared in terms of accuracy and computational efficiency. Exploiting the Toeplitz structure of the considered matrix, new theoretical insights are derived and an efficient implementation of some of the aforementioned algorithms is provided. |
doi_str_mv | 10.1109/TIT.2008.928966 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_20679879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4626067</ieee_id><sourcerecordid>34559584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-72323c92e04e307f9cc51c40bbf1aa064773cdfd56643103dc980a24afb5fdfe3</originalsourceid><addsrcrecordid>eNp90T1vFDEQBmALEYkjUFPQWEhAtRd_f5TkSEKki0DKUVs-7zg42l0f691A8uvx6aIUFKlG1jwzGutF6B0lS0qJPdlcbpaMELO0zFilXqAFlVI3VknxEi0IoaaxQphX6HUpt_UpJGULFFa5381TGm6wx-v8B0Z8muehxTni6Rfg6953HZQJn6UbGO58N8O-5fH1fd_DNKaAf-SSpnQHzVeIaUgT4E2GXZemB3zlq_j7Bh1F3xV4-1iP0c_zs83qW7P-fnG5-rJuAjd0ajTjjAfLgAjgREcbgqRBkO02Uu-JElrz0MZWKiU4JbwN1hDPhI9bGdsI_Bh9Puzdjfn3XI92fSoBus4PkOfijJZEam5UlZ-elVxIaaURFX74D97meRzqLxy10jLJ-B6dHFAYcykjRLcbU-_He0eJ22fjajZun407ZFMnPj6u9SX4Lo5-CKk8jTGitDXaVvf-4BIAPLWFYqoK_g_GbJcp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195925234</pqid></control><display><type>article</type><title>Computing a Lower Bound of the Smallest Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix</title><source>IEEE/IET Electronic Library</source><creator>Laudadio, T. ; Mastronardi, N. ; Van Barel, M.</creator><creatorcontrib>Laudadio, T. ; Mastronardi, N. ; Van Barel, M.</creatorcontrib><description>In this correspondence, several algorithms to compute a lower bound of the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix are described and compared in terms of accuracy and computational efficiency. Exploiting the Toeplitz structure of the considered matrix, new theoretical insights are derived and an efficient implementation of some of the aforementioned algorithms is provided.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2008.928966</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Algorithms ; Applied sciences ; Cholesky factorization ; Computation ; Computational efficiency ; Computer networks ; Control system synthesis ; Councils ; Eigenvalues ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Information theory ; Information, signal and communications theory ; Iterative algorithms ; Levinson-Durbin algorithm ; Lower bounds ; Mathematics ; Matrix ; QR factorization ; Read-write memory ; Signal processing algorithms ; Sun ; Symmetric matrices ; symmetric positive-definite matrix ; Telecommunications and information theory ; Toeplitz matrix</subject><ispartof>IEEE transactions on information theory, 2008-10, Vol.54 (10), p.4726-4731</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-72323c92e04e307f9cc51c40bbf1aa064773cdfd56643103dc980a24afb5fdfe3</citedby><cites>FETCH-LOGICAL-c381t-72323c92e04e307f9cc51c40bbf1aa064773cdfd56643103dc980a24afb5fdfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4626067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4626067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20679879$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Laudadio, T.</creatorcontrib><creatorcontrib>Mastronardi, N.</creatorcontrib><creatorcontrib>Van Barel, M.</creatorcontrib><title>Computing a Lower Bound of the Smallest Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In this correspondence, several algorithms to compute a lower bound of the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix are described and compared in terms of accuracy and computational efficiency. Exploiting the Toeplitz structure of the considered matrix, new theoretical insights are derived and an efficient implementation of some of the aforementioned algorithms is provided.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Cholesky factorization</subject><subject>Computation</subject><subject>Computational efficiency</subject><subject>Computer networks</subject><subject>Control system synthesis</subject><subject>Councils</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Iterative algorithms</subject><subject>Levinson-Durbin algorithm</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Matrix</subject><subject>QR factorization</subject><subject>Read-write memory</subject><subject>Signal processing algorithms</subject><subject>Sun</subject><subject>Symmetric matrices</subject><subject>symmetric positive-definite matrix</subject><subject>Telecommunications and information theory</subject><subject>Toeplitz matrix</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90T1vFDEQBmALEYkjUFPQWEhAtRd_f5TkSEKki0DKUVs-7zg42l0f691A8uvx6aIUFKlG1jwzGutF6B0lS0qJPdlcbpaMELO0zFilXqAFlVI3VknxEi0IoaaxQphX6HUpt_UpJGULFFa5381TGm6wx-v8B0Z8muehxTni6Rfg6953HZQJn6UbGO58N8O-5fH1fd_DNKaAf-SSpnQHzVeIaUgT4E2GXZemB3zlq_j7Bh1F3xV4-1iP0c_zs83qW7P-fnG5-rJuAjd0ajTjjAfLgAjgREcbgqRBkO02Uu-JElrz0MZWKiU4JbwN1hDPhI9bGdsI_Bh9Puzdjfn3XI92fSoBus4PkOfijJZEam5UlZ-elVxIaaURFX74D97meRzqLxy10jLJ-B6dHFAYcykjRLcbU-_He0eJ22fjajZun407ZFMnPj6u9SX4Lo5-CKk8jTGitDXaVvf-4BIAPLWFYqoK_g_GbJcp</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Laudadio, T.</creator><creator>Mastronardi, N.</creator><creator>Van Barel, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081001</creationdate><title>Computing a Lower Bound of the Smallest Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix</title><author>Laudadio, T. ; Mastronardi, N. ; Van Barel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-72323c92e04e307f9cc51c40bbf1aa064773cdfd56643103dc980a24afb5fdfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Cholesky factorization</topic><topic>Computation</topic><topic>Computational efficiency</topic><topic>Computer networks</topic><topic>Control system synthesis</topic><topic>Councils</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Iterative algorithms</topic><topic>Levinson-Durbin algorithm</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Matrix</topic><topic>QR factorization</topic><topic>Read-write memory</topic><topic>Signal processing algorithms</topic><topic>Sun</topic><topic>Symmetric matrices</topic><topic>symmetric positive-definite matrix</topic><topic>Telecommunications and information theory</topic><topic>Toeplitz matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laudadio, T.</creatorcontrib><creatorcontrib>Mastronardi, N.</creatorcontrib><creatorcontrib>Van Barel, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laudadio, T.</au><au>Mastronardi, N.</au><au>Van Barel, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing a Lower Bound of the Smallest Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2008-10-01</date><risdate>2008</risdate><volume>54</volume><issue>10</issue><spage>4726</spage><epage>4731</epage><pages>4726-4731</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In this correspondence, several algorithms to compute a lower bound of the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix are described and compared in terms of accuracy and computational efficiency. Exploiting the Toeplitz structure of the considered matrix, new theoretical insights are derived and an efficient implementation of some of the aforementioned algorithms is provided.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2008.928966</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2008-10, Vol.54 (10), p.4726-4731 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_pascalfrancis_primary_20679879 |
source | IEEE/IET Electronic Library |
subjects | Accuracy Algorithms Applied sciences Cholesky factorization Computation Computational efficiency Computer networks Control system synthesis Councils Eigenvalues Eigenvalues and eigenfunctions Exact sciences and technology Information theory Information, signal and communications theory Iterative algorithms Levinson-Durbin algorithm Lower bounds Mathematics Matrix QR factorization Read-write memory Signal processing algorithms Sun Symmetric matrices symmetric positive-definite matrix Telecommunications and information theory Toeplitz matrix |
title | Computing a Lower Bound of the Smallest Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20a%20Lower%20Bound%20of%20the%20Smallest%20Eigenvalue%20of%20a%20Symmetric%20Positive-Definite%20Toeplitz%20Matrix&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Laudadio,%20T.&rft.date=2008-10-01&rft.volume=54&rft.issue=10&rft.spage=4726&rft.epage=4731&rft.pages=4726-4731&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2008.928966&rft_dat=%3Cproquest_RIE%3E34559584%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195925234&rft_id=info:pmid/&rft_ieee_id=4626067&rfr_iscdi=true |