Computing a Lower Bound of the Smallest Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix
In this correspondence, several algorithms to compute a lower bound of the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix are described and compared in terms of accuracy and computational efficiency. Exploiting the Toeplitz structure of the considered matrix, new theoretical in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2008-10, Vol.54 (10), p.4726-4731 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this correspondence, several algorithms to compute a lower bound of the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix are described and compared in terms of accuracy and computational efficiency. Exploiting the Toeplitz structure of the considered matrix, new theoretical insights are derived and an efficient implementation of some of the aforementioned algorithms is provided. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2008.928966 |