Energy and Hydrogen Coproduction from (Athabasca Bitumen) Coke Gasification with CO2 Capture

Performance and economic assessments of exploitation of Athabasca bitumen coke (ABC) have been conducted to alleviate the dependence toward natural gas in bitumen recovery and upgrading. Power and hydrogen production from ABC-fed integrated gasification with combined cycle (IGCC) with CO2 capture or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2008-09, Vol.47 (18), p.7118-7129
Hauptverfasser: Nourouzi-Lavasani, S, Larachi, F, Benali, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Performance and economic assessments of exploitation of Athabasca bitumen coke (ABC) have been conducted to alleviate the dependence toward natural gas in bitumen recovery and upgrading. Power and hydrogen production from ABC-fed integrated gasification with combined cycle (IGCC) with CO2 capture or sequestration islands, namely, CO2 physical absorption in the Selexol process and CO2 mineral trapping (MT) with Ca(II)-bearing natural brines from local aquifers, have been analyzed. Simulations show that production costs of power (electricity and heat) and H2 from the IGCC/Selexol process are 0.0584 $/kWhe, 0.046 $/kWhh, and 1.4 $/kg H2, which could be competitive with current natural gas technologies. IGCC/Selexol outperforms the IGCC/MT process, which is reflected in larger production costs for power and H2 due to the cost of the pH-controlling reagents.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie800773a