Low Mach Number Modeling of Type Ia Supernovae. III. Reactions
We continue the description of a low Mach number hydrodynamics algorithm for reacting, full star flows. Here we demonstrate how to accurately incorporate reactions using a second-order accurate Strang-splitting technique. We also improve the fidelity of the model by allowing the base state to evolve...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2008-09, Vol.684 (1), p.449-470 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We continue the description of a low Mach number hydrodynamics algorithm for reacting, full star flows. Here we demonstrate how to accurately incorporate reactions using a second-order accurate Strang-splitting technique. We also improve the fidelity of the model by allowing the base state to evolve in response to large-scale convection as well as large-scale heating, taking care to account for the compositional changes to the base state as well. The new algorithm is tested via comparisons with a fully compressible code and shown to be in good agreement. The resulting code, MAESTRO, once extended to incorporate a spherically symmetric base state, will be used to study the convection and ignition phases of Type Ia supernovae. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1086/590321 |