Modeling and Measurement of Interlevel Electromagnetic Coupling and Fringing Effect in a Hierarchical Power Distribution Network Using Segmentation Method With Resonant Cavity Model
A hierarchical power distribution network (PDN) consists of chip, package, and printed circuit board (PCB) level PDNs, as well as various structures such as via, ball, and wire bond interconnections, which connect the different level PDNs. When estimating the simultaneous switching noise (SSN) gener...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on advanced packaging 2008-08, Vol.31 (3), p.544-557 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A hierarchical power distribution network (PDN) consists of chip, package, and printed circuit board (PCB) level PDNs, as well as various structures such as via, ball, and wire bond interconnections, which connect the different level PDNs. When estimating the simultaneous switching noise (SSN) generation and evaluating PDN designs, PDN impedance calculation is an efficient criterion. In this paper, we introduce two new kinds of modeling approaches that are exceptionally suited to improving the accuracy of the PDN impedance estimation, especially for hierarchical PDN. First, we propose a modeling procedure to add an interlevel electromagnetic coupling effect between PDNs of different levels, based on the resonant cavity model and segmentation method. In order to effectively consider the interlevel electromagnetic coupling effect, we introduce a new concept of interlevel PDN, which is, for example, composed of a metal plate in the package-level PDN and a metal plate in the PCB-level PDN. Next, we present a modeling procedure to include the fringing field effect at the edge of small-size PDN structure, which causes a considerable shift of cavity resonance frequencies in the PDN impedance profile. In order to verify the proposed modeling approaches, we have fabricated a series of test vehicles by combining two package-level PDN designs with a PCB-level PDN design. Finally, we have successfully validated the proposed modeling approaches with a series of frequency-domain measurements in a frequency range up to 5 GHz. |
---|---|
ISSN: | 1521-3323 1557-9980 |
DOI: | 10.1109/TADVP.2008.927837 |