Bright-matter solitons in a uniformly feeded Bose–Einstein condensate with expulsive harmonic potential

The Gross–Pitaevskii equation, which describes the dynamics of a one-dimensional uniformly feeded attractive Bose–Einstein condensate in an expulsive potential of arbitrary harmonic shape − a 2 x 2 + a 1 x , is solved analytically following the inverse scattering transform method. Within this approa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2008-07, Vol.49 (7), p.073520-073520-11
1. Verfasser: DIKANDE, Alain Moïse
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Gross–Pitaevskii equation, which describes the dynamics of a one-dimensional uniformly feeded attractive Bose–Einstein condensate in an expulsive potential of arbitrary harmonic shape − a 2 x 2 + a 1 x , is solved analytically following the inverse scattering transform method. Within this approach, bright-matter waves are obtained as exact envelope-soliton solutions of the nonlinear Schrödinger equation with a complex harmonic potential. The envelope shapes mimic double-lump pulses of unequal amplitudes symmetric with respect to the potential maximum, moving simultaneously at nonconstant accelerations with amplitudes that vary in time.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.2957942