A Note on p-Bases of a Regular Affine Domain Extension
Let $R^{p}\subseteq R^{\prime}\subseteq R$ be a tower of commutative rings where R is a regular affine domain over an algebraically closed field of prime characteristic p and R′ is a regular domain. Suppose R has a p-basis {φ₁,..., $\varphi _{r}$ } over $R^{p}$ and $[Q(R^{\prime})\colon Q(R^{p})]=p^...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2008-09, Vol.136 (9), p.3079-3087 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3087 |
---|---|
container_issue | 9 |
container_start_page | 3079 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 136 |
creator | Ono, Tomoaki |
description | Let $R^{p}\subseteq R^{\prime}\subseteq R$ be a tower of commutative rings where R is a regular affine domain over an algebraically closed field of prime characteristic p and R′ is a regular domain. Suppose R has a p-basis {φ₁,..., $\varphi _{r}$ } over $R^{p}$ and $[Q(R^{\prime})\colon Q(R^{p})]=p^{l}(1\leq l\leq r-1)$ . For a subset $\Gamma _{r-l}$ of R whose elements satisfy a certain condition on linear independence, let $M_{\Gamma _{r-l}}$ be a set of maximal ideals m of R such that $\Gamma _{r-l}$ is a p-basis of $R_{\germ{m}}$ over $R_{\germ{m}^{\prime}}^{\prime}$ ( $\germ{m}^{\prime}=\germ{m}\cap R^{\prime}$ ). We shall characterize this set in a geometrical aspect. |
doi_str_mv | 10.1090/S0002-9939-08-09338-6 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_20577513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20535519</jstor_id><sourcerecordid>20535519</sourcerecordid><originalsourceid>FETCH-LOGICAL-j207t-b4274eb794bba21c52334f2e2271fabc88c8e89ffb0b8e5d2923e65afb4bf4c73</originalsourceid><addsrcrecordid>eNpNjM1KxDAYRYMoWEcfYSAbl9HkS9IkyzrOqDAo-LMekphISycpTQV9ewsj4ureyzlchJaMXjFq6PULpRSIMdwQqgk1nGtSH6GKUT0XDfUxqv6UU3RWSjdPZoSqUN3gxzwFnBMeyI0toeAcscXP4eOztyNuYmxTwLd5b9uE119TSKXN6RydRNuXcPGbC_S2Wb-u7sn26e5h1WxJB1RNxAlQIjhlhHMWmJfAuYgQABSL1nmtvQ7axOio00G-gwEeammjEy4Kr_gCXR5-B1u87eNok2_LbhjbvR2_d0ClUpLx2VsevK5MefzPuZTM8B_ZllIm</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Note on p-Bases of a Regular Affine Domain Extension</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><creator>Ono, Tomoaki</creator><creatorcontrib>Ono, Tomoaki</creatorcontrib><description>Let $R^{p}\subseteq R^{\prime}\subseteq R$ be a tower of commutative rings where R is a regular affine domain over an algebraically closed field of prime characteristic p and R′ is a regular domain. Suppose R has a p-basis {φ₁,..., $\varphi _{r}$ } over $R^{p}$ and $[Q(R^{\prime})\colon Q(R^{p})]=p^{l}(1\leq l\leq r-1)$ . For a subset $\Gamma _{r-l}$ of R whose elements satisfy a certain condition on linear independence, let $M_{\Gamma _{r-l}}$ be a set of maximal ideals m of R such that $\Gamma _{r-l}$ is a p-basis of $R_{\germ{m}}$ over $R_{\germ{m}^{\prime}}^{\prime}$ ( $\germ{m}^{\prime}=\germ{m}\cap R^{\prime}$ ). We shall characterize this set in a geometrical aspect.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/S0002-9939-08-09338-6</identifier><identifier>CODEN: PAMYAR</identifier><language>eng</language><publisher>Providence, RI: American Mathematical Society</publisher><subject>Algebra ; Commutative rings and algebras ; Differentials ; Exact sciences and technology ; Factorials ; General mathematics ; General, history and biography ; Mathematical rings ; Mathematics ; Morphisms ; Polynomials ; Sciences and techniques of general use ; Subrings ; Vector spaces</subject><ispartof>Proceedings of the American Mathematical Society, 2008-09, Vol.136 (9), p.3079-3087</ispartof><rights>Copyright 2008 American Mathematical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20535519$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20535519$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20577513$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ono, Tomoaki</creatorcontrib><title>A Note on p-Bases of a Regular Affine Domain Extension</title><title>Proceedings of the American Mathematical Society</title><description>Let $R^{p}\subseteq R^{\prime}\subseteq R$ be a tower of commutative rings where R is a regular affine domain over an algebraically closed field of prime characteristic p and R′ is a regular domain. Suppose R has a p-basis {φ₁,..., $\varphi _{r}$ } over $R^{p}$ and $[Q(R^{\prime})\colon Q(R^{p})]=p^{l}(1\leq l\leq r-1)$ . For a subset $\Gamma _{r-l}$ of R whose elements satisfy a certain condition on linear independence, let $M_{\Gamma _{r-l}}$ be a set of maximal ideals m of R such that $\Gamma _{r-l}$ is a p-basis of $R_{\germ{m}}$ over $R_{\germ{m}^{\prime}}^{\prime}$ ( $\germ{m}^{\prime}=\germ{m}\cap R^{\prime}$ ). We shall characterize this set in a geometrical aspect.</description><subject>Algebra</subject><subject>Commutative rings and algebras</subject><subject>Differentials</subject><subject>Exact sciences and technology</subject><subject>Factorials</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Mathematical rings</subject><subject>Mathematics</subject><subject>Morphisms</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><subject>Subrings</subject><subject>Vector spaces</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpNjM1KxDAYRYMoWEcfYSAbl9HkS9IkyzrOqDAo-LMekphISycpTQV9ewsj4ureyzlchJaMXjFq6PULpRSIMdwQqgk1nGtSH6GKUT0XDfUxqv6UU3RWSjdPZoSqUN3gxzwFnBMeyI0toeAcscXP4eOztyNuYmxTwLd5b9uE119TSKXN6RydRNuXcPGbC_S2Wb-u7sn26e5h1WxJB1RNxAlQIjhlhHMWmJfAuYgQABSL1nmtvQ7axOio00G-gwEeammjEy4Kr_gCXR5-B1u87eNok2_LbhjbvR2_d0ClUpLx2VsevK5MefzPuZTM8B_ZllIm</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Ono, Tomoaki</creator><general>American Mathematical Society</general><scope>IQODW</scope></search><sort><creationdate>200809</creationdate><title>A Note on p-Bases of a Regular Affine Domain Extension</title><author>Ono, Tomoaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j207t-b4274eb794bba21c52334f2e2271fabc88c8e89ffb0b8e5d2923e65afb4bf4c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Commutative rings and algebras</topic><topic>Differentials</topic><topic>Exact sciences and technology</topic><topic>Factorials</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Mathematical rings</topic><topic>Mathematics</topic><topic>Morphisms</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><topic>Subrings</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ono, Tomoaki</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ono, Tomoaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on p-Bases of a Regular Affine Domain Extension</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2008-09</date><risdate>2008</risdate><volume>136</volume><issue>9</issue><spage>3079</spage><epage>3087</epage><pages>3079-3087</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><coden>PAMYAR</coden><abstract>Let $R^{p}\subseteq R^{\prime}\subseteq R$ be a tower of commutative rings where R is a regular affine domain over an algebraically closed field of prime characteristic p and R′ is a regular domain. Suppose R has a p-basis {φ₁,..., $\varphi _{r}$ } over $R^{p}$ and $[Q(R^{\prime})\colon Q(R^{p})]=p^{l}(1\leq l\leq r-1)$ . For a subset $\Gamma _{r-l}$ of R whose elements satisfy a certain condition on linear independence, let $M_{\Gamma _{r-l}}$ be a set of maximal ideals m of R such that $\Gamma _{r-l}$ is a p-basis of $R_{\germ{m}}$ over $R_{\germ{m}^{\prime}}^{\prime}$ ( $\germ{m}^{\prime}=\germ{m}\cap R^{\prime}$ ). We shall characterize this set in a geometrical aspect.</abstract><cop>Providence, RI</cop><pub>American Mathematical Society</pub><doi>10.1090/S0002-9939-08-09338-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2008-09, Vol.136 (9), p.3079-3087 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_pascalfrancis_primary_20577513 |
source | Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics |
subjects | Algebra Commutative rings and algebras Differentials Exact sciences and technology Factorials General mathematics General, history and biography Mathematical rings Mathematics Morphisms Polynomials Sciences and techniques of general use Subrings Vector spaces |
title | A Note on p-Bases of a Regular Affine Domain Extension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20p-Bases%20of%20a%20Regular%20Affine%20Domain%20Extension&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Ono,%20Tomoaki&rft.date=2008-09&rft.volume=136&rft.issue=9&rft.spage=3079&rft.epage=3087&rft.pages=3079-3087&rft.issn=0002-9939&rft.eissn=1088-6826&rft.coden=PAMYAR&rft_id=info:doi/10.1090/S0002-9939-08-09338-6&rft_dat=%3Cjstor_pasca%3E20535519%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=20535519&rfr_iscdi=true |