A Note on p-Bases of a Regular Affine Domain Extension

Let $R^{p}\subseteq R^{\prime}\subseteq R$ be a tower of commutative rings where R is a regular affine domain over an algebraically closed field of prime characteristic p and R′ is a regular domain. Suppose R has a p-basis {φ₁,..., $\varphi _{r}$ } over $R^{p}$ and $[Q(R^{\prime})\colon Q(R^{p})]=p^...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2008-09, Vol.136 (9), p.3079-3087
1. Verfasser: Ono, Tomoaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3087
container_issue 9
container_start_page 3079
container_title Proceedings of the American Mathematical Society
container_volume 136
creator Ono, Tomoaki
description Let $R^{p}\subseteq R^{\prime}\subseteq R$ be a tower of commutative rings where R is a regular affine domain over an algebraically closed field of prime characteristic p and R′ is a regular domain. Suppose R has a p-basis {φ₁,..., $\varphi _{r}$ } over $R^{p}$ and $[Q(R^{\prime})\colon Q(R^{p})]=p^{l}(1\leq l\leq r-1)$ . For a subset $\Gamma _{r-l}$ of R whose elements satisfy a certain condition on linear independence, let $M_{\Gamma _{r-l}}$ be a set of maximal ideals m of R such that $\Gamma _{r-l}$ is a p-basis of $R_{\germ{m}}$ over $R_{\germ{m}^{\prime}}^{\prime}$ ( $\germ{m}^{\prime}=\germ{m}\cap R^{\prime}$ ). We shall characterize this set in a geometrical aspect.
doi_str_mv 10.1090/S0002-9939-08-09338-6
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_20577513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20535519</jstor_id><sourcerecordid>20535519</sourcerecordid><originalsourceid>FETCH-LOGICAL-j207t-b4274eb794bba21c52334f2e2271fabc88c8e89ffb0b8e5d2923e65afb4bf4c73</originalsourceid><addsrcrecordid>eNpNjM1KxDAYRYMoWEcfYSAbl9HkS9IkyzrOqDAo-LMekphISycpTQV9ewsj4ureyzlchJaMXjFq6PULpRSIMdwQqgk1nGtSH6GKUT0XDfUxqv6UU3RWSjdPZoSqUN3gxzwFnBMeyI0toeAcscXP4eOztyNuYmxTwLd5b9uE119TSKXN6RydRNuXcPGbC_S2Wb-u7sn26e5h1WxJB1RNxAlQIjhlhHMWmJfAuYgQABSL1nmtvQ7axOio00G-gwEeammjEy4Kr_gCXR5-B1u87eNok2_LbhjbvR2_d0ClUpLx2VsevK5MefzPuZTM8B_ZllIm</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Note on p-Bases of a Regular Affine Domain Extension</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Ono, Tomoaki</creator><creatorcontrib>Ono, Tomoaki</creatorcontrib><description>Let $R^{p}\subseteq R^{\prime}\subseteq R$ be a tower of commutative rings where R is a regular affine domain over an algebraically closed field of prime characteristic p and R′ is a regular domain. Suppose R has a p-basis {φ₁,..., $\varphi _{r}$ } over $R^{p}$ and $[Q(R^{\prime})\colon Q(R^{p})]=p^{l}(1\leq l\leq r-1)$ . For a subset $\Gamma _{r-l}$ of R whose elements satisfy a certain condition on linear independence, let $M_{\Gamma _{r-l}}$ be a set of maximal ideals m of R such that $\Gamma _{r-l}$ is a p-basis of $R_{\germ{m}}$ over $R_{\germ{m}^{\prime}}^{\prime}$ ( $\germ{m}^{\prime}=\germ{m}\cap R^{\prime}$ ). We shall characterize this set in a geometrical aspect.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/S0002-9939-08-09338-6</identifier><identifier>CODEN: PAMYAR</identifier><language>eng</language><publisher>Providence, RI: American Mathematical Society</publisher><subject>Algebra ; Commutative rings and algebras ; Differentials ; Exact sciences and technology ; Factorials ; General mathematics ; General, history and biography ; Mathematical rings ; Mathematics ; Morphisms ; Polynomials ; Sciences and techniques of general use ; Subrings ; Vector spaces</subject><ispartof>Proceedings of the American Mathematical Society, 2008-09, Vol.136 (9), p.3079-3087</ispartof><rights>Copyright 2008 American Mathematical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20535519$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20535519$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20577513$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ono, Tomoaki</creatorcontrib><title>A Note on p-Bases of a Regular Affine Domain Extension</title><title>Proceedings of the American Mathematical Society</title><description>Let $R^{p}\subseteq R^{\prime}\subseteq R$ be a tower of commutative rings where R is a regular affine domain over an algebraically closed field of prime characteristic p and R′ is a regular domain. Suppose R has a p-basis {φ₁,..., $\varphi _{r}$ } over $R^{p}$ and $[Q(R^{\prime})\colon Q(R^{p})]=p^{l}(1\leq l\leq r-1)$ . For a subset $\Gamma _{r-l}$ of R whose elements satisfy a certain condition on linear independence, let $M_{\Gamma _{r-l}}$ be a set of maximal ideals m of R such that $\Gamma _{r-l}$ is a p-basis of $R_{\germ{m}}$ over $R_{\germ{m}^{\prime}}^{\prime}$ ( $\germ{m}^{\prime}=\germ{m}\cap R^{\prime}$ ). We shall characterize this set in a geometrical aspect.</description><subject>Algebra</subject><subject>Commutative rings and algebras</subject><subject>Differentials</subject><subject>Exact sciences and technology</subject><subject>Factorials</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Mathematical rings</subject><subject>Mathematics</subject><subject>Morphisms</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><subject>Subrings</subject><subject>Vector spaces</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpNjM1KxDAYRYMoWEcfYSAbl9HkS9IkyzrOqDAo-LMekphISycpTQV9ewsj4ureyzlchJaMXjFq6PULpRSIMdwQqgk1nGtSH6GKUT0XDfUxqv6UU3RWSjdPZoSqUN3gxzwFnBMeyI0toeAcscXP4eOztyNuYmxTwLd5b9uE119TSKXN6RydRNuXcPGbC_S2Wb-u7sn26e5h1WxJB1RNxAlQIjhlhHMWmJfAuYgQABSL1nmtvQ7axOio00G-gwEeammjEy4Kr_gCXR5-B1u87eNok2_LbhjbvR2_d0ClUpLx2VsevK5MefzPuZTM8B_ZllIm</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Ono, Tomoaki</creator><general>American Mathematical Society</general><scope>IQODW</scope></search><sort><creationdate>200809</creationdate><title>A Note on p-Bases of a Regular Affine Domain Extension</title><author>Ono, Tomoaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j207t-b4274eb794bba21c52334f2e2271fabc88c8e89ffb0b8e5d2923e65afb4bf4c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Commutative rings and algebras</topic><topic>Differentials</topic><topic>Exact sciences and technology</topic><topic>Factorials</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Mathematical rings</topic><topic>Mathematics</topic><topic>Morphisms</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><topic>Subrings</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ono, Tomoaki</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ono, Tomoaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on p-Bases of a Regular Affine Domain Extension</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2008-09</date><risdate>2008</risdate><volume>136</volume><issue>9</issue><spage>3079</spage><epage>3087</epage><pages>3079-3087</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><coden>PAMYAR</coden><abstract>Let $R^{p}\subseteq R^{\prime}\subseteq R$ be a tower of commutative rings where R is a regular affine domain over an algebraically closed field of prime characteristic p and R′ is a regular domain. Suppose R has a p-basis {φ₁,..., $\varphi _{r}$ } over $R^{p}$ and $[Q(R^{\prime})\colon Q(R^{p})]=p^{l}(1\leq l\leq r-1)$ . For a subset $\Gamma _{r-l}$ of R whose elements satisfy a certain condition on linear independence, let $M_{\Gamma _{r-l}}$ be a set of maximal ideals m of R such that $\Gamma _{r-l}$ is a p-basis of $R_{\germ{m}}$ over $R_{\germ{m}^{\prime}}^{\prime}$ ( $\germ{m}^{\prime}=\germ{m}\cap R^{\prime}$ ). We shall characterize this set in a geometrical aspect.</abstract><cop>Providence, RI</cop><pub>American Mathematical Society</pub><doi>10.1090/S0002-9939-08-09338-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2008-09, Vol.136 (9), p.3079-3087
issn 0002-9939
1088-6826
language eng
recordid cdi_pascalfrancis_primary_20577513
source Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics
subjects Algebra
Commutative rings and algebras
Differentials
Exact sciences and technology
Factorials
General mathematics
General, history and biography
Mathematical rings
Mathematics
Morphisms
Polynomials
Sciences and techniques of general use
Subrings
Vector spaces
title A Note on p-Bases of a Regular Affine Domain Extension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20p-Bases%20of%20a%20Regular%20Affine%20Domain%20Extension&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Ono,%20Tomoaki&rft.date=2008-09&rft.volume=136&rft.issue=9&rft.spage=3079&rft.epage=3087&rft.pages=3079-3087&rft.issn=0002-9939&rft.eissn=1088-6826&rft.coden=PAMYAR&rft_id=info:doi/10.1090/S0002-9939-08-09338-6&rft_dat=%3Cjstor_pasca%3E20535519%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=20535519&rfr_iscdi=true