A note on p-bases of a regular affine domain extension

Let R^p\subseteq R'\subseteq R be a tower of commutative rings where R is a regular affine domain over an algebraically closed field of prime characteristic p and R' is a regular domain. Suppose R has a p-basis \{\varphi _1,\dots ,\varphi _r\} over R^p and [Q(R') : Q(R^p)]=p^l (1\leq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2008-09, Vol.136 (9), p.3079-3087
1. Verfasser: Ono, Tomoaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R^p\subseteq R'\subseteq R be a tower of commutative rings where R is a regular affine domain over an algebraically closed field of prime characteristic p and R' is a regular domain. Suppose R has a p-basis \{\varphi _1,\dots ,\varphi _r\} over R^p and [Q(R') : Q(R^p)]=p^l (1\leq l\leq r-1). For a subset \Gamma _{r-l} of R whose elements satisfy a certain condition on linear independence, let M_{\Gamma _{r-l}} be a set of maximal ideals \mathfrak m of R such that \Gamma _{r-l} is a p-basis of R_{\mathfrak m} over R'_{\mathfrak m'} (\mathfrak m'=\mathfrak m\cap R'). We shall characterize this set in a geometrical aspect.
ISSN:0002-9939
1088-6826
DOI:10.1090/S0002-9939-08-09338-6