Integrating Compact Printed Antennas Onto Small Diversity/MIMO Terminals

The integration of compact printed multielement antenna (MEA) systems on small diversity and multiple input multiple output (MIMO) terminal devices operating in the 5.2 GHz industrial, scientific and medical (ISM) band is presented. The investigated MEA systems comprise up to six printed elements (i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2008-07, Vol.56 (7), p.2067-2078
Hauptverfasser: Karaboikis, M.P., Papamichael, V.C., Tsachtsiris, G.F., Soras, C.F., Makios, V.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The integration of compact printed multielement antenna (MEA) systems on small diversity and multiple input multiple output (MIMO) terminal devices operating in the 5.2 GHz industrial, scientific and medical (ISM) band is presented. The investigated MEA systems comprise up to six printed elements (inverted F and Minkowski monopole antennas) and their performance is evaluated by means of the effective diversity gain (EDG) and the 1% outage MIMO capacity. The role of the propagation environment (both outdoor and indoor) on EDG is examined, proving that the uniform scenario is a good approximation to many real environments. The tradeoff study between system's performance and number of integrated antenna elements indicates that both diversity and MIMO performance saturate when placing more than five closely spaced elements. Even the least efficient 6-element system however, can be advantageously used as a reconfigurable 2-element array under the concept of receive antenna selection, since it provides significantly improved MIMO performance over a conventional 2-element fixed one. The paper concludes with a summary of useful guidelines for the MEA design optimization procedure that emanated from this study.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2008.924677