The splitting number of the 4-cube
The splitting number of a graph G is the smallest integer k ≥ 0 such that a planar graph can be obtained from G by k splitting operations. Such operation replaces v by two nonadjacent vertices v1 and v2, and attaches the neighbors of v either to v1 or to v2. The n-cube has a distinguished plaice in...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!