The splitting number of the 4-cube
The splitting number of a graph G is the smallest integer k ≥ 0 such that a planar graph can be obtained from G by k splitting operations. Such operation replaces v by two nonadjacent vertices v1 and v2, and attaches the neighbors of v either to v1 or to v2. The n-cube has a distinguished plaice in...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The splitting number of a graph G is the smallest integer k ≥ 0 such that a planar graph can be obtained from G by k splitting operations. Such operation replaces v by two nonadjacent vertices v1 and v2, and attaches the neighbors of v either to v1 or to v2. The n-cube has a distinguished plaice in Computer Science. Dean and Richter devoted an article to proving that the minimum number of crossings in an optimum drawing of the 4-cube is 8, but no results about splitting number of other nonplanar n-cubes are known. In this note we give a proof that the splitting number of the 4-cube is 4. In addition, we give the lower bound 2n−2 for the splitting number of the n-cube. It is known that the splitting number of the n-cube is O(2n), thus our result implies that the splitting number of the n-cube is λ(2n). |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/BFb0054317 |