Distance-k Information in Self-stabilizing Algorithms
Many graph problems seem to require knowledge that extends beyond the immediate neighbors of a node. The usual self-stabilizing model only allows for nodes to make decisions based on the states of their immediate neighbors. We provide a general polynomial transformation for constructing self-stabili...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many graph problems seem to require knowledge that extends beyond the immediate neighbors of a node. The usual self-stabilizing model only allows for nodes to make decisions based on the states of their immediate neighbors. We provide a general polynomial transformation for constructing self-stabilizing algorithms which utilize distance-shape k knowledge, with a slowdown of nO(log k). Our main application is a polynomial-time self-stabilizing algorithm for finding maximal irredundant sets, a problem which seems to require distance-4 information. We also show how to find maximal k-packings in polynomial-time. Our techniques extend results in a recent paper by Gairing et al. for achieving distance-two information. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11780823_27 |