Experimental issues of functional merging on probability density estimation
This paper introduces a new technique for model adaptation of normal mixtures by merging their normal components. The merging technique is based on the angle (Arc-Cosine distance) between normal components in the mixture. Starting from an over-dimensioned mixture, we work out the underlying number o...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces a new technique for model adaptation of normal mixtures by merging their normal components. The merging technique is based on the angle (Arc-Cosine distance) between normal components in the mixture. Starting from an over-dimensioned mixture, we work out the underlying number of modes in a multimodal distribution in terms of a probabilistic measure of the best model. We illustrate the performance of functional merging on the automatic estimation of the number of lines in a degraded ancient manuscript (British library Beowulf poem) and the location of cells in microscope images. |
---|---|
ISSN: | 0537-9989 |
DOI: | 10.1049/cp:19970713 |